• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Nandi, H. A. Toliyat, X. Li, 2005, Condition monitoring and fault diagnosis of electrical motors—a review, IEEE transactions on energy conversion, Vol. 20, No. 4, pp. 719-729DOI
2 
R. B. Randall, J. Antoni, 2011, Rolling element bearing diagnostics—a tutorial, Mechanical systems and signal processing, Vol. 25, No. 2, pp. 485-520DOI
3 
M. Lebold, K. McClintic, R. Campbell, C. Byington, K. Maynard, 2000, Review of vibration analysis methods for gearbox diagnostics and prognostics, in Proceedings of the 54th meeting of the society for machinery failure prevention technology, vol. 634. Virginia Beach, Vol. va, pp. 16Google Search
4 
D.-T. Hoang, H.-J. Kang, 2019, A survey on deep learning based bearing fault diagnosis, Neurocomputing, Vol. 335, pp. 327-335DOI
5 
L. Ren, Y. Sun, H. Wang, L. Zhang, 2018, Prediction of bearing remaining useful life with deep convolution neural network, IEEE access, Vol. 6, pp. 13 041-13 049DOI
6 
A. B. Arrieta, N. D ́ıaz-Rodr ́ıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garc ́ıa, S. Gil-L ́opez, D. Molina, R. Benjamins, 2020, Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai, Information fusion, Vol. 58, pp. 82-115DOI
7 
Case Western Reserve University. Bearing datacenter web - site: bearing datacenter seeded fault test data[EB/OL]. [2007-11-27] .http://www/eecs/cwru/edu/laboratory/bearing/.Google Search
8 
Z. Xia, S. Xia, L. Wan, S. Cai, 2012, Spectral regression based fault feature extraction for bearing accelerometer sensor signals, Sensors, Vol. 12, No. 10, pp. 13 694-13 719DOI
9 
T. W. Rauber, F. de Assis Boldt, F. M. Varej ̃ao, 2014, Heterogeneous feature models and feature selection applied to bearing fault diagnosis, IEEE Transactions on Industrial Electronics, Vol. 62, No. 1, pp. 637-646DOI
10 
J. Tian, C. Morillo, M. H. Azarian, M. Pecht, 2015, Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with k-nearest neighbor distance analysis, IEEE Transactions on Industrial Electronics, Vol. 63, No. 3, pp. 1793-1803DOI
11 
V. S. Priya, P. Mahalakshmi, V. Naidu, 2015, Bearing health condition monitoring: Wavelet decomposition, Indian Journal of Science and Technology, Vol. 8, No. 26, pp. 1-7Google Search
12 
I. Guyon and A. Elisseeff, 2003, An introduction to variable and feature selection, Journal of machine learning research, Vol. 3, No. mar, pp. 1157-1182Google Search
13 
P. Konar and P. Chattopadhyay, 2011, Bearing fault detection of induction motor using wavelet and support vector machines (svms), Applied Soft Computing, Vol. 11, No. 6, pp. 4203-4211DOI
14 
M. Safizadeh and S. Latifi, 2014, Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell, Information fusion, Vol. 18, pp. 1-8DOI
15 
D. Neupane and J. Seok, 2020, Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review, IEEE Access, Vol. 8, pp. 93 155-93 178DOI
16 
D. Wang, Q. Guo, Y. Song, S. Gao, Y. Li, 2019, Application of multiscale learning neural network based on cnn in bearing fault diagnosis, Journal of Signal Processing Systems, Vol. 91, No. 10, pp. 1205-1217DOI
17 
X. Ding and Q. He, 2017, Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis, IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 8, pp. 1926-1935DOI
18 
H.-Y. Chen and C.-H. Lee, 2020, Vibration signals analysis by explainable artificial intelligence (xai) approach: Application on bearing faults diagnosis, IEEE Access, Vol. 8, pp. 134 246-134 256DOI
19 
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, 2016, Learning deep features for discriminative localization, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921-2929Google Search
20 
M. Menikdiwela, C. Nguyen, H. Li, M. Shaw, 2017, Cnn-based smal object detection and visualization with feature activation mapping, in 2017 International Conference on Image and Vision Computing New Zealand (IVCNZ). IEEE, pp. 1-5DOI
21 
H. Panwar, P. Gupta, M. K. Siddiqui, R. Morales- Menendez, P. Bhard-waj, V. Singh, 2020, A deep learning and grad-cam based color visualization approach for fast detection of covid-19 cases using chest x-ray and ct-scan images, Chaos, Solitons & Fractals, Vol. 140, pp. 110190DOI
22 
B. Sreejith, A. K. Verma, A. Srividya, 2008, Fault diagnosis of rolling element bearing using time-domain features and neural networks, in 2008 IEEE region 10 and the third international conference on industrial and information systems. IEEE, pp. 1-6DOI
23 
S. Sassi, B. Badri, M. Thomas, 2007, A numerical model to predict damaged bearing vibrations, Journal of Vibration and Control, Vol. 13, No. 11, pp. 1603-1628DOI
24 
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, 2017, Grad-cam: Visual explanations from deep networks via gradient-based localization, in Proceedings of the IEEE international conference on computer vision, pp. 618-626Google Search