• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
D. C. Shin, 2007, Health Effects of Ambient Particulate Matter, Journal of the Korean Medical Association, Vol. 50, No. 2, pp. 175-182DOI
2 
B. Jung, Feb 2021, Measurement and Management of Fine Dust in Railroad and Station, National Technology Proposal Insight, Vol. 2, pp. 1-29DOI
3 
Gi-Bong An, Mar 2012, The importance and role of Energy Storage Systems, In The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers, Vol. 26, No. 2, pp. 13-17DOI
4 
R. Y. Rubinstein, D. P. Kroese, 2016, Simulation and the Monte Carlo Method, 3rd ed. WileyDOI
5 
S. Kim, H. Kang, Y. Son, S. Yoon, J. Kim, G. Kim, I. Kim, 2010, Compensation of Light Scattering Method for Real-time Monitoring of Particulate Matters in Subway Stations, Journal of Korean Society for Atmospheric Environment, Vol. 26, No. 5, pp. 533-542DOI
6 
R. S. Sutton, A. G. Barto, 2018, Reinforcement Learning: An Introduction, 2nd ed. The MIT PressDOI
7 
B. Recht, 2019, A tour of reinforcement learning: The view from continuous control, Annual Review of Control, Robotics, and Autonomous Systems, Vol. 2, No. 1, pp. 253-279DOI
8 
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche, G., J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, 2016, Mastering the game of Go with deep neural networks and tree search, Nature, Vol. 529, No. 7587, pp. 484-489DOI
9 
J. Peters, J.A. Bagnell, 2016, Policy Gradient Methods. In: Sammut, C., Webb, G. (eds), Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA.DOI
10 
J. Peters, S. Schaal, 2008, Natural actor-critic, Neurocomputing, Vol. 71, No. 7-9, pp. 1180-1190DOI
11 
K. Kwon, S. Hong, J. Heo, H. Jung, J. Park, 2021, Reinforcement Learning-based HVAC Control Agent for Optimal Control of Particulate Matter in Railway Stations, The Transactions of the Korean Institute of Electrical Engineers, Vol. vol 70, No. 10, pp. 1594-1600DOI
12 
D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Jan 2014, Deterministic policy gradient algorithms, International converence on machine learning, pp. 387-395DOI
13 
J. R. Norris, 1997, Markov Chains, Cambridge University PressDOI
14 
K. Kwon, H. Zhu, 2022, Reinforcement Learning Based Optimal Battery Control Under Cycle-based Degradation Cost, IEEE Transactions on Smart GridDOI
15 
C. M. Bishop, 1995, Neural Networks for Pattern Recognition, Clarendon: OxfordDOI
16 
S. Sharma, S. Sharma, A. Athaiya, 2017, Activation functions in neural networks, Towards data science, Vol. 6, No. 12, pp. 310-316DOI
17 
K. Doya, Jan 2000, Reinforcement Learning in Continuous Time and Space, Neural Comput., Vol. 12, No. 1, pp. 219-245DOI
18 
R. J. Williams, 1992, Simple statistical gradient-following algorithms for connectionist reinforcement learning, Machine Learning, Vol. 8, No. 229DOI
19 
T. Zhao, H. Hachiya, G. Niu, M. Sugiyama, 2011, Analysis and Improvement of Policy Gradient Estimation, Advances in Neural Information Processing Systems, 24DOI
20 
Keras, 2022-08-27, , https://github.com/fchollet/kerasDOI
21 
Electric Power Statistics Information System (EPSIS), Hourly SMP, 2022 -08-27, https://epsis.kpx.or.kr/epsisnew/selectEkmaSmpShdChart.do?menuId=040202DOI