• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
D. H. Jeong, C. H. Son, 2021, Face superresolution in heavy rain conditions, Proceedings of KIIT Conference, pp. 426-430Google Search
2 
X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Quio, C. C. Loy, 2018, Esrgan: Enhanced super-resolution generative adversarial networks, Proceedings of the European conference on computer vision workshopsGoogle Search
3 
J. Li, Z. Pei, T. Zeng, 2021, From beginner to master: A survey for deep learning-based single-image super-resolution, arXiv preprint arXiv:2109.14335DOI
4 
J. S. Yoon, T. H. Kim, Y. S. Choe, 2021, GAN based Single Image Super-Resolution via Spatially Adaptive De-normalization, The transactions of The Korean Institute of Electrical Engineers, Vol. 70, No. 2, pp. 402-407DOI
5 
C. Dong, C. C. Loy, K. He, X. Tang, 2015, Image super-resolution using deep convolutional networks, IEEE transactions on pattern analysis and machine intelligence, Vol. 38, No. 2, pp. 295-307DOI
6 
J. W. Kim, J. K. Lee, K. M. Lee, 2016, Accurate image super-resolution using very deep convolutional networks, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1646-1654Google Search
7 
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi, 2017, Photo-realistic single image super-resolution using a generative adversarial network, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4681-4690Google Search
8 
B. Lim, S. H. Son, H. W. Kim, S. J. Nah, K. M. Lee, 2017, Enhanced deep residual networks for single image super-resolution, Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 136-144Google Search
9 
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, 2014, Generative adversarial nets, Advances in neural information processing systemsDOI
10 
M. S. Sajjadi, B. Scholkopf, M. Hirsch, 2017, Enhancenet: Single image super-resolution through automated texture synthesis, Proceedings of the IEEE international conference on computer vision, pp. 4491-4500Google Search
11 
S. J. Park, H. S. Son, S. H. Cho, K. S. Hong, S. Y. Lee, 2018, Srfeat: Single image super-resolution with feature discrimination, Proceedings of the European conference on computer vision, pp. 439-455Google Search
12 
Y. Yuan, S. Liu, J. Zhang, Y. Zhang, C. Dong, L. Lin, 2018, Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 701-710Google Search
13 
J. M. Ryu, J. M. Ma, 2021, A Study on Deep Learning-Based Super-Resolution Network Architecture for Military SAR Image, Korean Journal of Computational Design and Engineering, Vol. 26, No. 2, pp. 154-162Google Search
14 
Y. J. Choi, M. S. Kim, Y. W. Kim, S. H. Han, 2020, A Study of CNN-based Super-Resolution Method for Remote Sensing Image, Korean Journal of Remote Sensing, Vol. 36, No. 3, pp. 449-460DOI
15 
H. S. Ha, B. Y. Hwang, 2018, Enhancement method of CCTV video quality based on SRGAN, Journal of Korea Multimedia Society, Vol. 21, No. 9, pp. 1027-1034DOI
16 
Oh-Seol Kwon, 2020, Real-time low-resolution face recognition algorithm for surveillance systems, Journal of Broadcast Engineering, Vol. 25, No. 1, pp. 105-108DOI
17 
J. M. Choi, D. J. Kang, 2017, Deep Super-resolution Method via Generative Adversarial Networks for License Place Image Enhancement, Journal of Institute of Control, Robotics and Systems, Vol. 23, No. 8, pp. 635-643Google Search
18 
S. J. Lee, T. J. Kim, C. H. Lee, S. B. Yoo, 2021, Image Super-Resolution for Improving Object Recognition Accuracy, Journal of the Korea Institute of Information and Communication Engineering, Vol. 25, No. 6, pp. 774-784DOI
19 
W. Wang, E. Xie, X. Liu, W. Wang, D. Liang, C. Shen, X. Bai, 2020, Scene text image super-resolution in the wild, European Conference on Computer Vision, Springer, Cham, pp. 650-666DOI
20 
H. M. Choi, K. S. Seo, 2021, Reconstruction Error based Anomaly Detection Defects Using GAN, The transactions of The Korean Institute of Electrical Engineers, Vol. 70, No. 4, pp. 679-683Google Search
21 
K. H. Jeong, Ki. S. Seo, 2021, Abandonment Behavior Detection Using Ganerative Advesarial Networks, The transactions of The Korean Institute of Electrical Engineers, Vol. 70, No. 9, pp. 1331-1335DOI
22 
J. H. Yang, T. G. Kim, S. G. Yoon, 2022, DCGAN based Event Detection Scheme Using D-PMU Data in Distribution Systems, The transactions of The Korean Institute of Electrical Engineers, Vol. 71, No. 4, pp. 555-565Google Search