KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2022-11
(Vol.71 No.11)
10.5370/KIEE.2022.71.11.1666
Journal XML
XML
PDF
INFO
REF
References
1
R. Chai, A. Savvaris, A. Tsourdos, S. Chai, 2020, Overview of trajectory optimization techniques, in Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems. Springer, pp. 7-25
2
H.-H. Kwon, H.-S. Shin, Y.-H. Kim, D.-H. Lee, 2019, Trajectory optimization for impact angle control based on sequential convex programming, The Transactions of The Korean Institute of Electrical Engineers, Vol. 68, No. 1, pp. 159-166
3
Y. Aoyama, G. Boutselis, A. Patel, E. A. Theodorou, 2021, Constrained differential dynamic programming revisited, in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9738-9744
4
Y. Tassa, N. Mansard, E. Todorov, 2014, Control-limited differential dynamic programming, in 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1168-1175
5
T. A. Howell, B. E. Jackson, Z. Manchester, 2019, ALTRO: A fast solver for constrained trajectory optimization, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7674-7679
6
A. Pavlov, I. Shames, C. Manzie, 2021, Interior point differential dynamic programming, IEEE Transactions on Control Systems Technology, Vol. 29, No. 6, pp. 2720-2727
7
F. Alizadeh, 2012, An introduction to formally real Jordan algebras and their applications in optimization, in Handbook on Semidefinite Conic and Polynomial Optimization Springer, pp. 297-337
8
M. Orlitzky, 2021, Euclidean Jordan algebras for optimization. draft, [Online]. Available: http://michael.orlitzky.com/
9
A. Domahidi, E. Chu, S. Boyd, 2013, ECOS: An SOCP solver for embedded systems, in 2013 European Control Conference (ECC), pp. 3071-3076
10
J. F. Sturm, 1999, Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones, Optimization Methods and Software, Vol. 11, No. 1-4, pp. 625-653
11
A. Wachter, L. T. Biegler, 2006, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, Vol. 106, No. 1, pp. 25-57
12
Z. Xie, C. K. Liu, K. Hauser, 2017, Differential dynamic programming with nonlinear constraints, in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 695-702
13
J. Nocedal, S. J. Wright, 1999, Numerical Optimization. Springer, New York USA
14
S. Boyd, L. Vandenberghe, 2004, Convex Optimization, Cambridge University Press Cambridge