KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2023-03
(Vol.72 No.03)
10.5370/KIEE.2023.72.3.434
Journal XML
XML
PDF
INFO
REF
References
1
Y. C. Huang, Y. S. Tung, J. C. Chen, S. W. Wang, J. L. Wu, 2005, An adaptive edge detection based colorization algorithm and its applications, In Proceedings of the 13th annual ACM international conference on Multimedia, pp. 351-354
2
A. Y.-S. Chia, S. Zhuo, R. K. Gupta, Y.-W. Tai, S.-Y. Cho, P. Tan, S. Lin, 2011, Semantic colorization with internet images, in ACM Transactions on Graphics, Vol. 30, No. 6, pp. 156
3
R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, A. A. Efros, 2017, Real-time user-guided image colorization with learned deep priors, ACM Transactions on Graphics (TOG), Vol. 36, No. 4, pp. 1-11
4
S. Jheng-Wei, C. Hung-Kuo, H. Jia-Bin, 2020, Instance-aware image colorization, in IEEE conference on computer vision and pattern recognition, pp. 7968-7977
5
Y. Wu, X. Wang, Y. Li, H. Zhang, X. Zhao, Y. Shan, 2021, Towards vivid and diverse image colorization with generative color prior, Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14377-14386
6
R. Timofte, V. De Smet, L. Van Gool, 2013, Anchored neighborhood regression for fast example-based super-resolution, In Proceedings of the IEEE international conference on computer vision, pp. 1920-1927
7
K.I. Kim, Y. Kwon, 2010, Single-image super-resolution using sparse regression and natural image prior, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 6, pp. 1127-1133
8
C. Dong, C.C. Loy, K. He, X. Tang, 2014, Learning a deep convolutional network for image super-resolution., in European conference on computer vision, pp. 184-199
9
J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte, 2021, Swinir: Image restoration using swin transformer, in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833-1844
10
B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee, 2017, Enhanced deep residual networks for single image super-resolution, in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 136-144
11
G. Kim, K. Kang, S. Kim, H. Lee, S. Kim, J. Kim, S. Baek, S. Cho, 2022, BigColor: Colorization using a Generative Color Prior for Natural Images, In European Conference on Computer Vision, pp. 350-366
12
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, 2017, Gans trained by a two time-scale update rule converge to a local nash equilibrium, Advances in neural information processing systems, Vol. 30
13
J. H. Lim, J. C. Ye, 2017, Geometric gan, arXiv preprint arXiv:1705.02894
14
A. Brock, J. Donahue, K. Simonyan, 2018, Large scale GAN training for high fidelity natural image synthesis, arXiv preprint arXiv:1809.11096
15
K. Simonyan, A. Zisserman, 2014, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409 1556
16
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, 2016, Rethinking the inception architecture for computer vision, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826