• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, 2018, Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, Int. J. Cancer, Vol. 144, pp. 1941-1953DOI
2 
Ministry of Health and Welfare, 2023, Annual report of the National Cancer Registration Program 2020, Ministry of Health and WelfareDOI
3 
Korea National Cancer Center, 2021, Cancer trend report through data, DOI
4 
Korean Academy of Medical Sciences, 2021, Annual Report of Medical Subspecialty in Korea 2021, DOI
5 
O. Attallah, M. Sharkas, 2021, GASTRO-CADx: a three stages framework for diagnosing gastrointestinal diseases, PeerJ Computer Science, Vol. 7, pp. e423-DOI
6 
F. Mohammad, M. Al-Razgan, 2022, Deep feature fusion and optimization-based approach for stomach disease classification, Sensors, Vol. 22, No. 7, pp. 2801-DOI
7 
H. Ueyama, 2021, Application of Artificial Intelligence with a Convolutional Neural Network for Early Gastric Cancer Diagnosis Based on Magnifying Endoscopy with Narrow‐Band Imaging, Journal of Gastroenterology and Hepatology, Vol. 36, No. 2, pp. 482-489DOI
8 
H. Okamoto, Q. Cap, T. Nomura, H. Iyatomi, J. Hashimoto, 2019, Stochastic Gastric Image Augmentation for Cancer Detection from X-ray Images, Proceedings of the 2019 IEEE International Conference on Big Data, pp. 4858-4863DOI
9 
A. Teramoto, T. Shibata, H. Yamada, Y. Hirooka, K. Saito, H. Fujita, 2022, Detection and characterization of gastric cancer using a cascade deep learning model in endoscopic images, Diagnostics, Vol. 12, No. 8, pp. 1996-DOI
10 
Y. Sakai, S. Takemoto, K. Hori, M. Nishimura, H. Ikematsu, T. Yano, H. Yokota, 2018, Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network, Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4138-4141DOI
11 
M. Kang, S. Kang, K. Oh, 2020, Verification of the Effect of Data Augmentation and Transfer Learning on the Performance Improvement of CNN-Based Gastroscope Classification/ Segmentation, Proceedings of the Korea Information Science Society Conference, pp. 593-595DOI
12 
E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, 2019, Autoaugment: Learning augmentation strategies from data. Proc, In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 113-123DOI
13 
A. Krizhevsky, 2009, Learning multiple layers of features from tiny images, Technical reportDOI
14 
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, 2009, Imagenet: A large-scale hierarchical image database, IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255DOI
15 
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, 2011, Reading Digits in Natural Images with Unsupervised Feature Learning, Neural Information Processing Systems (NIPS)DOI
16 
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, 2020, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, arXiv preprint arXiv:2010.11929DOI
17 
Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, Mar. 2022, A ConvNet for the 2020s, In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11976-11986DOI
18 
S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, 2017, Aggregated residual transformations for deep neural networks, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492-1500DOI
19 
P. Foret, A. Kleiner, H. Mobahi, B. Neyshabur, 2020, Sharpness-aware minimization for efficiently improving generalization, arXiv preprint arXiv:2010.01412DOI