KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2023-11
(Vol.72 No.11)
10.5370/KIEE.2023.72.11.1406
Journal XML
XML
PDF
INFO
REF
References
1
Ministry of Health and Welfare, 2022, Annual report of the National Cancer Registration Program 2020, Seoul: Ministry of Health and Welfare
2
Korea Consumer Agency, 2017, Cancer Misdiagnosis Consumer Damage Prevention Advisory, July. 13, 2017
3
Korea National Health Insurance Corporation, 2023, National cancer screening rate, 2023
4
P. Nanglia, S. Kumar, A. N. Mahajan, P. Singh, D. Rathee, 2021, A hybrid algorithm for lung cancer classification using SVM and Neural Networks, ICT Express, Vol. 7, No. 3, pp. 335-341
5
T. L. Chaunzwa, A. Hosny, Y. Xu, A. Shafer, N. Diao, M. Lanuti, D. C. Christiani, R. H. Mak, H. J. W. L. Aerts, 2021, Deep learning classification of lung cancer histology using CT images, Scientific reports, Vol. 11, No. 1, pp. 5471
6
A. Shimazaki, D. Ueda, A. Choppin, A. Yamamoto, T. Honjo, Y. Shimahara, Y. Miki, 2022, Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method, Scientific Reports, Vol. 12, No. 1, pp. 727
7
A. Teramoto, A. Yamada, Y. Kiriyama, T. Tsukamoto, K. Yan, L. Zhang, 2019, Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network, Informatics in Medicine Unlocked, Vol. 16, pp. 100205
8
H. F. Al-Yasriy, 2023, The IQ-OTH/NCCD lung cancer dataset, Mendeley Data, version 4
9
H. F. Al-Yasriy, M. S. Al-Husieny, F. Y. Mohsen, E. A. Khalil, Z. S. Hassan, 2020, Diagnosis of Lung Cancer Based on CT Scans Using CNN, IOP Conference Series: Materials Science and Engineering, Vol. 928
10
H. F. Kareem, M. S. A.-Husieny, F. Y. Mohsen, E. A. Khalil, Z. S. Hassan, 2021, Evaluation of SVM performance in the detection of lung cancer in marked CT scan dataset, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 21, No. 3, pp. 1731-1738
11
E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, 2019, Autoaugment: Learning augmentation strategies from data. Proc, In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 113-123
12
A. Krizhevsky, 2009, Learning multiple layers of features from tiny images, Technical report
13
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, 2009, Imagenet: A large-scale hierarchical image database, IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255
14
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, 2011, Reading Digits in Natural Images with Unsupervised Feature Learning, Neural Information Processing Systems (NIPS)
15
M. Tan, Q. V. Le, 2019, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, International Conference on Machine Learning
16
T. Elsken, J. H. Metzen, F. Hutter, 2019, Neural Architecture Search: A Survey, Journal of Machine Learning Research, Vol. 20, pp. 1-21
17
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv preprint arXiv:1704.04861
18
M. Tan, Q. V. Le, 2021, EfficientNetV2: Smaller Models and Faster Training, International Conference on Machine Learning
19
J. Hu, L. Shen, S. Albanie, G. Sun, E. Wu, 2018, Squeeze- and-Excitation Networks, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141
20
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby, 2020, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, arXiv preprint arXiv:2010.11929
21
Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, Mar. 2022, A ConvNet for the 2020s, In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11976-11986
22
S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, 2017, Aggregated residual transformations for deep neural networks, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492-1500