KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2023-11
(Vol.72 No.11)
10.5370/KIEE.2023.72.11.1420
Journal XML
XML
PDF
INFO
REF
References
1
J. A. Block, N. Shakoor, 2009, The biomechanics of osteoarthritis: Implications for therapy, Current Rheumatol. Rep., Vol. 11, No. 1, pp. 15-22
2
N. Giladi, F. B. Horak, J. M. Hausdorff, 2013, Classification of gait disturbances: Distinguishing between continuous and Soc., Soc., Vol. 28, No. 11, pp. 1469-1473
3
O. Blin, A. M. Ferrandez, G. Serratrice, 1990, Quantitative analysis of gait in Parkinson patients: increased variability of stride length, J. Neurol. Sci., Vol. 98, No. , pp. 91-98
4
W. B. Edwards, D. Taylor, T. J. Rudolphi, J. C. Gillette, T. R. Derrick, 2009, Effects of stride length and running mileage on a probabilistic stress fracture model, Med Sci Sports Exerc., Vol. 41, No. 12, pp. 2177-2184
5
J. Woo, S. C. Ho, A. L. M. Yu, Oct. 1999, Walking speed and stride length predicts 36 months dependency, mortality, and institutionalization in Chinese aged 70 and older, J. Amer. Geriatrics Soc., Vol. 47, No. 10, pp. 1257-1260
6
J. L. Purser, 2005, Walking speed predicts health status and hospital costs for frail elderly male veterans, J. Rehabil. Res. Develop., Vol. 42, No. 4, pp. 535-546
7
M. Brughelli, J. Cronin, A. Chaouachi, Apr. 2011, Effects of running velocity on running kinetics and kinematics, J. Strength Conditioning Res., Vol. 25, No. 4, pp. 933-939
8
E. R. Vieira, 2015, Temporo-spatial gait parameters during street crossing conditions: A comparison between younger and older adults, Gait Posture, Vol. 41, No. 2, pp. 510-515
9
J. Stenum, J. T. Choi, Sep. 2020, Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking, J. Physiol., Vol. 598, No. 18, pp. 4063-4078
10
V. Jakob, 2021, Validation of a sensor-based gait analysis system with a gold-standard motion capture system in patients with Parkinson’s disease, Sensors, Vol. 21, No. 22, pp. 1-11
11
E. Allseits, V. Agrawal, J. Lučarević, R. Gailey, I. Gaunaurd, C. Bennett, 2018, A practical step length algorithm using lower limb angular velocities, Journal of biomechanics, Vol. 66, pp. 137-144
12
J. Hannink, T. Kautz, C. F. Pasluosta, J. Barth, S. Schülein, K. G. Gaßmann, 2016, Stride length estimation with deep learning, arXiv preprint arXiv:1609.03321
13
J. D. Sui, T. S. Chang, 2021, IMU Based Deep Stride Length Estimation With Self-Supervised Learning, IEEE Sensors Journal, Vol. 21, No. 6, pp. 7380-7387
14
Q. Wang, L. Ye, H. Luo, A. Men, F. Zhao, Y. Huang, 2019, Pedestrian stride-length estimation based on LSTM and denoising autoencoders, Sensors, Vol. 19, No. 4, pp. 840-
15
M. Vezoˇcnik, R. Kamnik, M. B. Juric, 2021, Inertial sensor-based step length estimation model by means of principal component analysis, Sensors, Vol. 21, No. 10, pp. 3527-
16
H. Jin, I. Kang, G. Choi, D. D. Molinaro, A. J. Young, 2021, Wearable sensor-based step length estimation during overground locomotion using a deep convolutional neural network, Proc. 43rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), pp. 4897-4900
17
A. Nouriani, R. A. McGovern, R. Rajamani, 2021, Step length estimation with wearable sensors using a switched-gain nonlinear observer, Biomed. Signal Process. Control, Vol. 69, pp. Art. no. 102822
18
J. Abbasi, H. Salarieh, A. Alasty, 2021, A motion capture algorithm based on inertia-Kinect sensors for lower body elements and step length estimation, Biomed. Signal Process. Control, Vol. 64, pp. Art. no. 102290
19
Z. Q. Ling, Y. P. Zhang, G. Z. Cao, J. C. Chen, L. L. Li, D. P. Tan, 2022, AE-CNN-Based Multisource Data Fusion for Gait Motion Step Length Estimation, IEEE Sensors Journal, Vol. 22, No. 21, pp. 20805-20815
20
R. Okuno, S. Fujimoto, J. Akazawa, M. Yokoe, S. Sakoda, K. Akazawa, 2008, Analysis of spatial temporal plantar pressure pattern during gait in Parkinson's disease, IEEE Engineering in Medicine and Biology Society, pp. 1765-1768
21
B. Drerup, A. Szczepaniak, H. H. Wetz, 2008, Plantar pressure reduction in step-to gait: a biomechanical investigation and clinical feasibility study, Clinical Biomechanics, Vol. 23, No. 8, pp. 1073-1079
22
L. Allet, H. IJzerman, K. Meijer, P. Willems, H. Savelberg, 2011, The influence of stride-length on plantar foot-pressures and joint moments, Gait & Posture, Vol. 34, No. 3, pp. 300-306
23
J. R. Verbiest, B. Bonnechère, W. Saeys, P. Van de Walle, S. Truijen, P. Meyns, 2023, Gait Stride Length Estimation Using Embedded Machine Learning, Sensors, Vol. 23, No. 16, pp. 7166-
24
M. Shu, G. Chen, Z. Zhang, 2022, EL-SLE: Efficient Learning Based Stride-Length Estimation Using a Smartphone, Sensors, Vol. 22, No. 18, pp. 6864-
25
W. Zhu, B. Anderson, S. Zhu, Y. Wang, 2016, A computer vision-based system for stride length estimation using a mobile phone camera, ACM SIGACCESS Conference on Computers and Accessibility, pp. 121-130
26
R. C. Gonzalez, D. Alvarez, A. M. Lopez, J. C. Alvarez, 2007, Modified pendulum model for mean step length estimation, IEEE Engineering in Medicine and Biology Society, pp. 1371-1374
27
S. Chakraborty, A. Nandy, 2020, Automatic diagnosis of cerebral palsy gait using computational intelligence techniques: A low-cost multi-sensor approach, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 28, No. 11, pp. 2488-2496
28
D. J. Mayich, A. Novak, D. Vena, T. R. Daniels, J. W. Brodsky, 2014, Gait analysis in orthopedic foot and ankle surgery—topical review, part 1: principles and uses of gait analysis, Foot & Ankle International, Vol. 35, No. 1, pp. 80-90
29
E. C. P. Chu, A. Y. L. Wong, 2022, Mitigating Gait Decline in a Woman With Parkinson’s Disease: A Case Report, Journal of Medical Cases, Vol. 13, No. 3, pp. 140-
30
M. Zago, M. Tarabini, M. Delfino Spiga, C. Ferrario, F. Bertozzi, C. Sforza, M. Galli, 2021, Machine-learning based determination of gait events from foot-mounted inertial units, Sensors, Vol. 21, No. 3, pp. 839-
31
J. Hong, Z. Feng, S. H. Wang, A. Peet, Y. D. Zhang, Y. Sun, M. Yang, 2020, Brain age prediction of children using routine brain MR images via deep learning, Frontiers in Neurology, Vol. 11, pp. 584682-
32
H. A. Carvajal-Castaño, P. A. Pérez-Toro, J. R. Orozco-Arroyave, 2022, Classification of Parkinson’s Disease Patients—a Deep Learning Strategy, Electronics, Vol. 11, No. 17, pp. 2684-
33
Z. P. Luo, L. J. Berglund, K. N. An, 1998, Validation of F-Scan Pressure Sensor System: A Technical Note, Journal of Rehabilitation Research and Development, Vol. 35, pp. 186-186
34
C. Wang, Y. Kim, S. D. Min, 2018, Soft-material-based Smart Insoles for a Gait Monitoring System, Materials, Vol. 11, No. 12, pp. 2435-