• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. A. Block, N. Shakoor, 2009, The biomechanics of osteoarthritis: Implications for therapy, Current Rheumatol. Rep., Vol. 11, No. 1, pp. 15-22DOI
2 
N. Giladi, F. B. Horak, J. M. Hausdorff, 2013, Classification of gait disturbances: Distinguishing between continuous and Soc., Soc., Vol. 28, No. 11, pp. 1469-1473DOI
3 
O. Blin, A. M. Ferrandez, G. Serratrice, 1990, Quantitative analysis of gait in Parkinson patients: increased variability of stride length, J. Neurol. Sci., Vol. 98, No. , pp. 91-98DOI
4 
W. B. Edwards, D. Taylor, T. J. Rudolphi, J. C. Gillette, T. R. Derrick, 2009, Effects of stride length and running mileage on a probabilistic stress fracture model, Med Sci Sports Exerc., Vol. 41, No. 12, pp. 2177-2184DOI
5 
J. Woo, S. C. Ho, A. L. M. Yu, Oct. 1999, Walking speed and stride length predicts 36 months dependency, mortality, and institutionalization in Chinese aged 70 and older, J. Amer. Geriatrics Soc., Vol. 47, No. 10, pp. 1257-1260DOI
6 
J. L. Purser, 2005, Walking speed predicts health status and hospital costs for frail elderly male veterans, J. Rehabil. Res. Develop., Vol. 42, No. 4, pp. 535-546DOI
7 
M. Brughelli, J. Cronin, A. Chaouachi, Apr. 2011, Effects of running velocity on running kinetics and kinematics, J. Strength Conditioning Res., Vol. 25, No. 4, pp. 933-939DOI
8 
E. R. Vieira, 2015, Temporo-spatial gait parameters during street crossing conditions: A comparison between younger and older adults, Gait Posture, Vol. 41, No. 2, pp. 510-515DOI
9 
J. Stenum, J. T. Choi, Sep. 2020, Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking, J. Physiol., Vol. 598, No. 18, pp. 4063-4078DOI
10 
V. Jakob, 2021, Validation of a sensor-based gait analysis system with a gold-standard motion capture system in patients with Parkinson’s disease, Sensors, Vol. 21, No. 22, pp. 1-11DOI
11 
E. Allseits, V. Agrawal, J. Lučarević, R. Gailey, I. Gaunaurd, C. Bennett, 2018, A practical step length algorithm using lower limb angular velocities, Journal of biomechanics, Vol. 66, pp. 137-144DOI
12 
J. Hannink, T. Kautz, C. F. Pasluosta, J. Barth, S. Schülein, K. G. Gaßmann, 2016, Stride length estimation with deep learning, arXiv preprint arXiv:1609.03321DOI
13 
J. D. Sui, T. S. Chang, 2021, IMU Based Deep Stride Length Estimation With Self-Supervised Learning, IEEE Sensors Journal, Vol. 21, No. 6, pp. 7380-7387DOI
14 
Q. Wang, L. Ye, H. Luo, A. Men, F. Zhao, Y. Huang, 2019, Pedestrian stride-length estimation based on LSTM and denoising autoencoders, Sensors, Vol. 19, No. 4, pp. 840-DOI
15 
M. Vezoˇcnik, R. Kamnik, M. B. Juric, 2021, Inertial sensor-based step length estimation model by means of principal component analysis, Sensors, Vol. 21, No. 10, pp. 3527-DOI
16 
H. Jin, I. Kang, G. Choi, D. D. Molinaro, A. J. Young, 2021, Wearable sensor-based step length estimation during overground locomotion using a deep convolutional neural network, Proc. 43rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), pp. 4897-4900Google Search
17 
A. Nouriani, R. A. McGovern, R. Rajamani, 2021, Step length estimation with wearable sensors using a switched-gain nonlinear observer, Biomed. Signal Process. Control, Vol. 69, pp. Art. no. 102822DOI
18 
J. Abbasi, H. Salarieh, A. Alasty, 2021, A motion capture algorithm based on inertia-Kinect sensors for lower body elements and step length estimation, Biomed. Signal Process. Control, Vol. 64, pp. Art. no. 102290DOI
19 
Z. Q. Ling, Y. P. Zhang, G. Z. Cao, J. C. Chen, L. L. Li, D. P. Tan, 2022, AE-CNN-Based Multisource Data Fusion for Gait Motion Step Length Estimation, IEEE Sensors Journal, Vol. 22, No. 21, pp. 20805-20815DOI
20 
R. Okuno, S. Fujimoto, J. Akazawa, M. Yokoe, S. Sakoda, K. Akazawa, 2008, Analysis of spatial temporal plantar pressure pattern during gait in Parkinson's disease, IEEE Engineering in Medicine and Biology Society, pp. 1765-1768DOI
21 
B. Drerup, A. Szczepaniak, H. H. Wetz, 2008, Plantar pressure reduction in step-to gait: a biomechanical investigation and clinical feasibility study, Clinical Biomechanics, Vol. 23, No. 8, pp. 1073-1079DOI
22 
L. Allet, H. IJzerman, K. Meijer, P. Willems, H. Savelberg, 2011, The influence of stride-length on plantar foot-pressures and joint moments, Gait & Posture, Vol. 34, No. 3, pp. 300-306DOI
23 
J. R. Verbiest, B. Bonnechère, W. Saeys, P. Van de Walle, S. Truijen, P. Meyns, 2023, Gait Stride Length Estimation Using Embedded Machine Learning, Sensors, Vol. 23, No. 16, pp. 7166-DOI
24 
M. Shu, G. Chen, Z. Zhang, 2022, EL-SLE: Efficient Learning Based Stride-Length Estimation Using a Smartphone, Sensors, Vol. 22, No. 18, pp. 6864-DOI
25 
W. Zhu, B. Anderson, S. Zhu, Y. Wang, 2016, A computer vision-based system for stride length estimation using a mobile phone camera, ACM SIGACCESS Conference on Computers and Accessibility, pp. 121-130DOI
26 
R. C. Gonzalez, D. Alvarez, A. M. Lopez, J. C. Alvarez, 2007, Modified pendulum model for mean step length estimation, IEEE Engineering in Medicine and Biology Society, pp. 1371-1374DOI
27 
S. Chakraborty, A. Nandy, 2020, Automatic diagnosis of cerebral palsy gait using computational intelligence techniques: A low-cost multi-sensor approach, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 28, No. 11, pp. 2488-2496DOI
28 
D. J. Mayich, A. Novak, D. Vena, T. R. Daniels, J. W. Brodsky, 2014, Gait analysis in orthopedic foot and ankle surgery—topical review, part 1: principles and uses of gait analysis, Foot & Ankle International, Vol. 35, No. 1, pp. 80-90DOI
29 
E. C. P. Chu, A. Y. L. Wong, 2022, Mitigating Gait Decline in a Woman With Parkinson’s Disease: A Case Report, Journal of Medical Cases, Vol. 13, No. 3, pp. 140-DOI
30 
M. Zago, M. Tarabini, M. Delfino Spiga, C. Ferrario, F. Bertozzi, C. Sforza, M. Galli, 2021, Machine-learning based determination of gait events from foot-mounted inertial units, Sensors, Vol. 21, No. 3, pp. 839-DOI
31 
J. Hong, Z. Feng, S. H. Wang, A. Peet, Y. D. Zhang, Y. Sun, M. Yang, 2020, Brain age prediction of children using routine brain MR images via deep learning, Frontiers in Neurology, Vol. 11, pp. 584682-DOI
32 
H. A. Carvajal-Castaño, P. A. Pérez-Toro, J. R. Orozco-Arroyave, 2022, Classification of Parkinson’s Disease Patients—a Deep Learning Strategy, Electronics, Vol. 11, No. 17, pp. 2684-DOI
33 
Z. P. Luo, L. J. Berglund, K. N. An, 1998, Validation of F-Scan Pressure Sensor System: A Technical Note, Journal of Rehabilitation Research and Development, Vol. 35, pp. 186-186DOI
34 
C. Wang, Y. Kim, S. D. Min, 2018, Soft-material-based Smart Insoles for a Gait Monitoring System, Materials, Vol. 11, No. 12, pp. 2435-DOI