KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2023-12
(Vol.72 No.12)
10.5370/KIEE.2023.72.12.1705
Journal XML
XML
PDF
INFO
REF
References
1
N. Muskinja, B. Tovornik, April 2006, Swinging Up and Stabilization of a Real Inverted Pendulum, in IEEE Transactions on Industrial Electronics, Vol. 53, No. 2, pp. 631-639
2
Y. Otani, T. Kurokami, A. Inoue, Y. Hirashima, 2001, A Swingup Control of an Inverted Pendulum with Cart Position Control, IFAC Proceedings, Vol. 34, pp. 395-400
3
K. Graicehn, M. Treuer, M. Zeitz, 2007, Swing-up of the Double Pendulum on a Cart by Feedforward and Feedback Control with Experimental Validation, Automatica, Vol. 43, pp. 63-71
4
J. Kober, J. A. Bagnell, J. Peters, 2013, Reinforcement Learning in Robotics: A Survey, The International Journal of Robotics Research, Vol. 32, pp. 1238-1274
5
S. Israilov, L. Fu, J. Sánchez-Rodríguez, F. Fusco, G. Allibert, C. Raufaste, A. Médéric, 2023, Reinforcement Learning Approach to Control an Inverted Pendulum: A General Framework for Educational Purposes, PLoS ONE, Vol. 18, No. e0280071
6
J. Baek, C. Lee, Y. S. Lee, S. Jeon, S. Han, 2024, Reinforcement Learning to Achieve Real-time Control of Triple Inverted Pendulum, Engineering Applications of Artificial Intelligence, Vol. 128, No. 107518
7
Y. Gil, J. H. Park, J. Baek, S. Han, 2022, Quantization- aware Pruning Criterion for Industrial Applications, IEEE Transactions on Industrial Electronics, Vol. 69, No. 3, pp. 3203-3213
8
J. Baek, H. Jun, J. Park, H. Lee, S. Han, 2021, Sparse Variational Deterministic Policy Gradient for Continuous Real-time Control, IEEE Transactions on Industrial Electronics, Vol. 68, No. 10, pp. 9800-9810
9
G. Dulac-Arnold, D. Mankowitz, T. Hester, 2019, Challenges of Real-world Reinforcement Learning, arXiv preprint arXiv:1904.12901
10
W. Zhao, J. P. Queralta, T. Westerlund, 2020, Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey, 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 737-744
11
N. Jakobi, P. Husbands, 1995, Noise and the Reality Gap: The Use of Simulation in Evolutionary Robotics, Advances in Artificial Life: Third European Conference on Artificial Life Granada, pp. 704-720
12
T. Glück, A. Eder, A. Kugi, 2013, Swing-up Control of a Triple Pendulum on a Cart with Experimental Validation, Automatica, Vol. 49, pp. 801-808
13
D. Ju, C. Choi, J. Jeong, Y. S. Lee, 2022, Design and Parameter Estimation of a Double Inverted Pendulum for Model-based Swing-up Control, Journal of Institute of Control, Robotics and Systems (in Korean), Vol. 28, No. 9, pp. 793-803
14
T. Lee, D. Ju, Y. S. Lee, 2023, Development Environment of Reinforcement Learning-based Controllers for Real-world Physical Systems Using LW-RCP, Journal of Institute of Control, Robotics and Systems (in Korean), Vol. 29, No. 7, pp. 543-549
15
T. Haarnoja, A. Zhou, P. Abbeel, 2018, Soft Actor-critic: Off-policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, International conference on machine learning. PMLR, pp. 1861-1870
16
D. P. Kingma., 2014, Adam: A Method for Stochastic Optimization, arXiv preprint arXiv:1412.6980
17
J. Jeong, D. Ju, Y. Fujiyama, Y. S. Lee, 2023, Transition Control of a Double Inverted Pendulum Using an LW-RCP, Journal of Institute of Control, Robotics and Systems (in Korean), Vol. 29, No. 9, pp. 694-703