• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehiclemarkets. Nat. Energy 2018, 3, 279–289.DOI
2 
Nishi, Y. Lithiumion secondary batteries; Past 10 years and the future. J. Power Sources 2001, 100, 101–106.DOI
3 
Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant- Moynot, V.; Huet, F. Safety focused modeling of lithium-ion batteries: A review. J. Power Sources 2016, 306, 178–192.DOI
4 
Wang, Y.; Zhang, C.; Chen, Z. An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles. J. Power Sources 2016, 305, 80–88.DOI
5 
Feng, X.; Lu, L.; Ouyang, M.; Li, J.; He, X. A 3D thermal runaway propagation model for a large format lithium ion batterymodule. Energy 2016, 115, 194–208.DOI
6 
Stroe, D.I.; Swierczynski, M.; Stan, A.I.; Teodorescu, R.; Andreasen, S.J. Accelerated lifetime testing methodology for lifetime estimation of lithium-ion batteries used in augmented wind power plants. IEEE Trans. Ind. Appl. 2014, 50, 4006–4017.DOI
7 
Khumprom, P.; Yodo, N. A data-driven predictive prognostic model for lithium-ion batteries based on a deep learning algorithm. Energies 2019, 12, 660.DOI
8 
Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs—Part 1. Background. J. Power Sources 2004, 134, 252–261.DOI
9 
Kim, Y.; Bang, H. Introduction to Kalman Filter and Its Applications. Introd. Implement. Kalman Filter 2019, 1, 1–16.URL
10 
Sepasi, S.; Ghorbani, R.; Liaw, B.Y. Inline state of health estimation of lithium-ion batteries using state of charge calculation. J. Power Sources 2015, 299, 246–254.DOI
11 
Chen, Z.P.;Wang, Q.T. The Application of UKF Algorithm for 18650-type Lithium Battery SOH Estimation. Appl. Mech. Mater. 2014, 519–520, 1079–1084.DOI
12 
Oji, T.; Zhou, Y.; Ci, S.; Kang, F.; Chen, X.; Liu, X. Data-Driven Methods for Battery SOH Estimation: Survey and a Critical Analysis. IEEE Access 2021, 9, 126903–126916.DOI
13 
Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688.DOI
14 
Liu, D.; Zhou, J.; Liao, H.; Peng, Y.; Peng, X. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 915–928.DOI
15 
Li, Y.; Zhong, S.; Zhong, Q.; Shi, K. Lithium-ion battery state of health monitoring based on ensemble learning. IEEEDOI
16 
You, G.W.; Park, S.; Oh, D. Diagnosis of Electric Vehicle Batteries Using Recurrent Neural Networks. IEEE Trans. Ind. Electron. 2017, 64, 4885–4893.DOI
17 
Park, M.-S.; Lee, J.-k.; Kim, B.-W. SOH Estimation of Li-Ion Battery Using Discrete Wavelet Transform and Long Short-Term Memory Neural Network. Appl. Sci. 2022, 12, 3996. https://doi.org/10.3390/app12083996.DOI
18 
D. Anseán et al., “Lithium-Ion Battery Degradation Indicators Via Incremental Capacity Analysis,” in IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2992-3002, May-June 2019, doi: 10.1109/TIA.2019.2891213.DOI
19 
B. Saha, K. Goebel, Battery data set, Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/URL
20 
B. Jia and M. Xin, “Data-Driven Enhanced Nonlinear Gaussian Filter,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 6, pp. 1144-1148, June 2020.DOI
21 
VETTER, Jens, et al. Ageing mechanisms in lithium-ion batteries. Journal of power sources, 2005, 147.1-2: 269-281.DOI
22 
DUBARRY, Matthieu; TRUCHOT, Cyril; LIAW, Bor Yann. Synthesize battery degradation modes via a diagnostic and prognostic model. Journal of power sources, 2012, 219: 204- 216.DOI
23 
VERMA, Pallavi; MAIRE, Pascal; NOVÁK, Petr. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010, 55.22: 6332- 6341.DOI
24 
PASTOR-FERNÁNDEZ, Carlos, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems. Journal of Power Sources, 2017, 360: 301-318.DOI