• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. Zhong, Z. Liu, Z. Han, Y. Han, and W. Zhang, “CNN-based defect inspection method for catenary,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 8, pp. 2849-2860, Oct. 2018.DOI
2 
K. Kim, S. Hong, B. Roh, Y. Cheon, and M. Park, “PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection,” arXiv preprint, arXiv:1608.08021, 2016.DOI
3 
L. Chen, C. Xu, S. Lin, S. Li, and X. Tu, “A Deep Learning-Based Method for Overhead Contact System Component Recognition Using Mobile 2D LiDAR,” Sensors, vol. 20, no. 8, p. 2224, April 2020.DOI
4 
C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.URL
5 
Y. Niina, R. Honma, Y. Honma, K. Kondo, K. Tsuji, T. Hiramatsu, and E. Oketani, “AUTOMATIC RAIL EXTRACTION AND CELARANCE CHECK WITH A POINT CLOUD CAPTURED BY MLS IN A RAILWAY,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 42, pp. 767-771, 2018.DOI
6 
P. J. Besl and N. D. McKay, “A method for registration of 3D shapes,” in Sensor fusion IV: control paradigms and data structures, 1992.DOI
7 
Z. Liu, W. Liu, and Z. Han, “A High-Precision Detection Approach for Catenary Geometry Parameters of Electrical Railway,” IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 7, pp. 1798-1808, 2017.DOI
8 
M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no.6, pp. 381-395, 1981.DOI