• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
F. Gao, R. Kang, J. Cao, and T. Yang, “Primary and Secondary Control in DC Microgrids: A Review,” in Journal of Modern Power Systems and Clean Energy, vol. 7, Issue 2, pp. 227-242, March 2019.DOI
2 
I. Chung, W. Liu, D. Cartes, E. Collins, and S. Moon “Control Methods for Multiple Distributed Generators in a Microgrid System,” IEEE Trans. Industry Applications. vol. 46, no. 3, May 2010.URL
3 
K. Moslehi, and R. Kumar, “A Reliability Perspective of the Smart Grid,” IEEE Trans. Smart Grid, vol. 1, pp. 57–64, 2010.DOI
4 
D. Kodaira, B. Yu, W. Jung, and S. Han, “Optimized ESS Operation for Peak Shaving based on Probabilistic Load Prediction,” In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), vol. 22, pp. 1199–1203, May 2018.DOI
5 
S. Jimeng, J. Mahek, and N. Giri, “Time Series Forecasting (TSF) Using Various Deep Learning Models,” arXiv:2204.11115, 2024.DOI
6 
A. Jorge, M. Hugo, and P. Lucas, “Benchmark of Electricity Consumption Forecasting Methodologies Applied to Industrial Kitchens,” MDPI Buildings, Dec. 2022.DOI
7 
K. Jonghwa, C. Jongwho, and K. changwan, “Time Series Prediction Using Recurrent Neural Network,” Journal of The Korean Data Analysis Society, vol. 21, pp. 1771-1779, Feb. 2019.URL
8 
CL. Chinnadurrai, S. Ravindran, and S. Udaiyakumar, “Energy Management of a Microgrid based on LSTM Deep Learning Prediction Model,” 2021 Smart Technologies Communication and Robotics (STCR), pp. 1-6, Nov. 2021.DOI
9 
D. Ayda, G. F. Luis, B. Stephen, and B. Argenis, “Temperature Prediction in Microgrids Using LSTMs: A Case Study,” 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 1237-1242, Aug. 2022.DOI