• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital Twin: Enabling Technologies, Challenges and Open Research,” IEEE Access, vol. 8, pp. 108952-108971, 2020.DOI
2 
B. O. Koopman, “Hamiltonian systems and transformation in Hibert space,” Proceedings of the National Academy of Sciences of the United States of America, vol 17, no. 5, pp. 315-318, 1931.DOI
3 
P. Schmid, and J. Sesterhenn, “Dynamic mode decomposition of numerical and experimental data,” Bulletin of the American Physical Society, Sixty-First Annual Meeting of the APS Division of Fluid Dynamics, vol. 53, no. 15, 2008.DOI
4 
B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear embeddings of nonlinear dynamics,” Nature Communications, vol. 9, no. 4950, 2018.DOI
5 
P. J. Baddoo, B. Herrmann, B. J. Mckeon, J. N. Kutz, and S. L. Brunton, “Physics-informed dynamic mode decomposition,” Proceedings of the Royal Society A, 2013.DOI
6 
O. Azencot, N. B. Erichson, V. Lin, and M. Mahoney, “Forecasting Sequential Data Using Consistent Koopman Autoencoders,” Proceedings of the 37th International Conference on Machine Leanring, PMLR, vol. 119, pp. 475-485, 2020.URL
7 
K. Tayal, A. Renganathan, R. Ghosh, X. Jia, and V. Kumar, “Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics for Temporal Modeling,” 2023 IEEE Conference on Data Mining (ICDM), 2023.DOI
8 
N. Geneva, and N. Zabaras, “Transformers for modeling physical systems,” Neural Networks, vol. 146, pp. 272-289, 2022.DOI
9 
Y. Jin, L. Hou, and S. Zhong, “Extended Dynamic Mode Decomposition with Invertible Dictionary Learning,” Neural Networks, vol. 173, 2024.DOI
10 
J. Li, and P. Stinis, “Model Reduction for a Power Grid Model,” American Institute of Mathematical Sciences, vol. 9, no. 1, pp. 1-26, 2022.DOI