• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Kim, H. J., & Park, J. H., “Application of Artificial Neural Networks for Predicting the Performance of Activated Sludge Process,” Journal of Environmental Managemnt, vol. 215, pp. 25-32, 2018.DOI:10.1016/j.jenvman.2018.01.045URL
2 
Gawande, N. A., Dharmik, P. G., & Nikalje, A. P., “ Artificial Intelligence in Wastewater Treatment Process: State of the Art and Research Trends,” Environmental Technology & Innovation, vol. 20, pp. 101-121, 2020.DOI:10.1016/j.eti.2020.101089URL
3 
Ahmed, S., & Naser, J., “A Comprehensive Review of AI Applications in Wastewater Treatment: Focus on Activated Sludge Processes,” Water Research, vol. 210, pp. 118-129, 2022.DOI:10.1016/j.watres.2022.118029URL
4 
Solanki, M., Zhang, Y., & Shah, M., “Hybrid Models Combining Process-Based and Data-Driven Approaches for Wastewater Treatment Prediction,” Journal of Hydrology, vol. 598, pp. 126-136, 2021.DOI:10.1016/j.jhydrol.2021.126366URL
5 
Singh, P., & Sarkar, D., “Artificial Neural Networks in Wastewater Treatment: A Comprehensive Review,” Environmental Science and Pollution Research, vol. 28, no. 21, pp. 618-645, 2021.DOI:10.1007/s11356-021-13082-5URL
6 
Kumar, M., Singh, S., & Srivastava, P., “Applications of Machine Learning in Wastewater Treatment: A Critical Review,” Journal of Water Process Engineering, vol. 53, pp. 103-135, 2023. DOI:10.1016/j.jwpe.2023.103506URL
7 
Eui-Seok Nahm, “Optimization of activated sludge process in wastewater treatment system using explainable neural network,” The Transactions of the Korean Institute of Electrical Engineers, vol. 69, no. 12, pp. 1950-1956, 2020.URL
8 
Eui-Seok Nahm, “A Study on Fuzzy Control Method of Energy Saving for Activated Sludge Process in Sewage Treatment Plant,” The Transactions of the Korean Institute of Electrical Engineers, vol. 67, no. 11, pp. 1477-1485, 2018.DOI
9 
Eui-Seok Nahm, “A Study on Validity Verification of Input/Output Process Data and Energy Saving in Water Treatment System Using Calibration,” The Transactions of the Korean Institute of Electrical Engineers, vol. 69, no. 1, pp. 177~183, 2020.URL
10 
Ribeiro, M. T., Singh, S., & Guestrin, C., “Why should I trust you? Explaining the predictions of any classifier,” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144, 2016.DOI
11 
Goodfellow, I. J., Shlens, J., & Szegedy, C., Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2015.DOI
12 
Lundberg, S. M., & Lee, S. I., A unified approach to interpreting model predictions, In Advances in Neural Information Processing Systems, pp. 4765-4774, 2017.URL