KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2024-10
(Vol.73 No.10)
10.5370/KIEE.2024.73.10.1711
Journal XML
XML
PDF
INFO
REF
References
1
Kim, H. J., & Park, J. H., “Application of Artificial Neural Networks for Predicting the Performance of Activated Sludge Process,” Journal of Environmental Managemnt, vol. 215, pp. 25-32, 2018.DOI:10.1016/j.jenvman.2018.01.045
2
Gawande, N. A., Dharmik, P. G., & Nikalje, A. P., “ Artificial Intelligence in Wastewater Treatment Process: State of the Art and Research Trends,” Environmental Technology & Innovation, vol. 20, pp. 101-121, 2020.DOI:10.1016/j.eti.2020.101089
3
Ahmed, S., & Naser, J., “A Comprehensive Review of AI Applications in Wastewater Treatment: Focus on Activated Sludge Processes,” Water Research, vol. 210, pp. 118-129, 2022.DOI:10.1016/j.watres.2022.118029
4
Solanki, M., Zhang, Y., & Shah, M., “Hybrid Models Combining Process-Based and Data-Driven Approaches for Wastewater Treatment Prediction,” Journal of Hydrology, vol. 598, pp. 126-136, 2021.DOI:10.1016/j.jhydrol.2021.126366
5
Singh, P., & Sarkar, D., “Artificial Neural Networks in Wastewater Treatment: A Comprehensive Review,” Environmental Science and Pollution Research, vol. 28, no. 21, pp. 618-645, 2021.DOI:10.1007/s11356-021-13082-5
6
Kumar, M., Singh, S., & Srivastava, P., “Applications of Machine Learning in Wastewater Treatment: A Critical Review,” Journal of Water Process Engineering, vol. 53, pp. 103-135, 2023. DOI:10.1016/j.jwpe.2023.103506
7
Eui-Seok Nahm, “Optimization of activated sludge process in wastewater treatment system using explainable neural network,” The Transactions of the Korean Institute of Electrical Engineers, vol. 69, no. 12, pp. 1950-1956, 2020.
8
Eui-Seok Nahm, “A Study on Fuzzy Control Method of Energy Saving for Activated Sludge Process in Sewage Treatment Plant,” The Transactions of the Korean Institute of Electrical Engineers, vol. 67, no. 11, pp. 1477-1485, 2018.
9
Eui-Seok Nahm, “A Study on Validity Verification of Input/Output Process Data and Energy Saving in Water Treatment System Using Calibration,” The Transactions of the Korean Institute of Electrical Engineers, vol. 69, no. 1, pp. 177~183, 2020.
10
Ribeiro, M. T., Singh, S., & Guestrin, C., “Why should I trust you? Explaining the predictions of any classifier,” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144, 2016.
11
Goodfellow, I. J., Shlens, J., & Szegedy, C., Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2015.
12
Lundberg, S. M., & Lee, S. I., A unified approach to interpreting model predictions, In Advances in Neural Information Processing Systems, pp. 4765-4774, 2017.