KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2024-11
(Vol.73 No.11)
10.5370/KIEE.2024.73.11.2004
Journal XML
XML
PDF
INFO
REF
References
1
W. Cao, D. Wang, J. Li, H. Zhou, L. Li ,and Y. Li, “Brits: Bidirectional recurrent imputation for time series,” NeurIPS, vol. 31, 2018.
2
A. Cini, I. Marisca, and C. Alippi, “Filling the G_ap_s: Multivariate time series imputation by graph neural networks,” Proc. ICLR, 2022.
3
C. F. Ansley, and R. Kohn, “On the estimation of arima models with missing values,” Proc. Time series analysis of irregularly observed data. Springer, pp. 9–37, 1984.
4
R. H. Shumway, and D. S. Stoffer, “An approach to time series smoothing and forecasting using the EM algorithm,” Journal of time series analysis, vol. 3, no. 4, pp. 253–264, 1982.
5
F. V. Nelwamondo, S. Mohamed, and T. Marwala, “Missing data: A comparison of neural network and expectation maximization techniques,” Current Science, pp. 1514–1521, 2007.
6
H. Trevor, T. Robert, and F. Jerome, “The elements of statistical learning: data mining, inference, and prediction,” 2009.
7
M. Liu, et al., “PriSTI: A conditional diffusion framework for spatiotemporal imputation,” arXiv preprint arXiv:2302.09746, 2023.
8
O. Azencot et al., “Forecasting sequential data using consistent koopman autoencoders,” Int. Conf. Machine Learning (ICML), pp. 475-485, 2020.
9
R. Wang, Y. Dong, S. O. Arik, and R. Yu, “Koopman neural operator forecaster for time-series with temporal distributional shifts,” Proc. The Eleventh Int. Conf. Learning Representations (ICLR), pp. 1-15, Feb. 2023.
10
M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. vol. 378, pp. 686–707, 2019.
11
D. Kochkov, J.A. Smith, A. Alieva, Q. Wang, M.P. Brenner, and S. Hoyer, “Machine learning–accelerated computational fluid dynamics,” Proc. Natl. Acad. Sci., vol. 118, no. 21, 2021.
12
B. O. Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. the National Academy of Sciences, vol. 17, pp. 315–318, 1931.
13
V.Iakovlev, M. Heinonen, and H. Lähdesmäki. “Learning space-time continuous neural PDEs from partially observed states,” arXiv preprint arXiv:2307.04110, pp. 1-21, 2023.
14
I. Nayak, D. Goswami, M. Kumar, and F. Teixeira, “Temporallyconsistent koopman autoencoders for forecasting dynamical systems,” arXiv preprint arXiv:2403.12335, 2024.
15
O. Azencot, N. B. Erichson, V. Lin, and M. Mahoney, “Forecasting sequential data using consistent koopman autoencoders,” Proc. Int. Conf. Mach. Learn., pp. 475-485, 2020.
16
J. Choi, S. Krishnan, and J. Park, “Koopman autoencoder via singular value decomposition for data-driven long-term prediction,” arXiv preprint arXiv:2408.11303, 2024.