• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
W. Cao, D. Wang, J. Li, H. Zhou, L. Li ,and Y. Li, “Brits: Bidirectional recurrent imputation for time series,” NeurIPS, vol. 31, 2018.URL
2 
A. Cini, I. Marisca, and C. Alippi, “Filling the G_ap_s: Multivariate time series imputation by graph neural networks,” Proc. ICLR, 2022.URL
3 
C. F. Ansley, and R. Kohn, “On the estimation of arima models with missing values,” Proc. Time series analysis of irregularly observed data. Springer, pp. 9–37, 1984.DOI
4 
R. H. Shumway, and D. S. Stoffer, “An approach to time series smoothing and forecasting using the EM algorithm,” Journal of time series analysis, vol. 3, no. 4, pp. 253–264, 1982.DOI
5 
F. V. Nelwamondo, S. Mohamed, and T. Marwala, “Missing data: A comparison of neural network and expectation maximization techniques,” Current Science, pp. 1514–1521, 2007.URL
6 
H. Trevor, T. Robert, and F. Jerome, “The elements of statistical learning: data mining, inference, and prediction,” 2009.URL
7 
M. Liu, et al., “PriSTI: A conditional diffusion framework for spatiotemporal imputation,” arXiv preprint arXiv:2302.09746, 2023.DOI
8 
O. Azencot et al., “Forecasting sequential data using consistent koopman autoencoders,” Int. Conf. Machine Learning (ICML), pp. 475-485, 2020.URL
9 
R. Wang, Y. Dong, S. O. Arik, and R. Yu, “Koopman neural operator forecaster for time-series with temporal distributional shifts,” Proc. The Eleventh Int. Conf. Learning Representations (ICLR), pp. 1-15, Feb. 2023.URL
10 
M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. vol. 378, pp. 686–707, 2019.DOI
11 
D. Kochkov, J.A. Smith, A. Alieva, Q. Wang, M.P. Brenner, and S. Hoyer, “Machine learning–accelerated computational fluid dynamics,” Proc. Natl. Acad. Sci., vol. 118, no. 21, 2021.DOI
12 
B. O. Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. the National Academy of Sciences, vol. 17, pp. 315–318, 1931.DOI
13 
V.Iakovlev, M. Heinonen, and H. Lähdesmäki. “Learning space-time continuous neural PDEs from partially observed states,” arXiv preprint arXiv:2307.04110, pp. 1-21, 2023.DOI
14 
I. Nayak, D. Goswami, M. Kumar, and F. Teixeira, “Temporallyconsistent koopman autoencoders for forecasting dynamical systems,” arXiv preprint arXiv:2403.12335, 2024.DOI
15 
O. Azencot, N. B. Erichson, V. Lin, and M. Mahoney, “Forecasting sequential data using consistent koopman autoencoders,” Proc. Int. Conf. Mach. Learn., pp. 475-485, 2020.URL
16 
J. Choi, S. Krishnan, and J. Park, “Koopman autoencoder via singular value decomposition for data-driven long-term prediction,” arXiv preprint arXiv:2408.11303, 2024.URL