• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
D. B. Nah, H. S. Shin, and D. J. Nah, “Offshore Wind Power, Review,” Journal of Energy Engineering, vol. 20, no. 2, pp. 143–153, Jun. 2011.DOI:10.5855/energy.2011.20.2.14URL
2 
H. Ergun, D. Van Hertem, and R. Belmans, “Transmission System Topology Optimization for Large-Scale Offshore Wind Integration,” IEEE Transactions on Sustainable Energy, vol. 3, no. 4, pp. 908–917, Oct. 2012.DOI:10.1109/TSTE.2012.219934DOI
3 
D. Song, J. Yan, H. Zeng, X. Deng, J. Yang, X. Qu, R. M. Rizk-Allah, V. Snášel, and Y. H. Joo, “Topological Optimization of an Offshore-Wind-Farm Power Collection System Based on a Hybrid Optimization Methodology,” Journal of Marine Science and Engineering, vol. 11, no. 2, pp. 279, Jan. 2023.DOI:10.3390/jmse1102027DOI
4 
A. C. Pillai, J. Chick, L. Johanning, and M. Khorasanchi, “Offshore wind farm layout optimization using particle swarm optimization,” Journal of Ocean Engineering and Marine Energy, vol. 4, no. 1, pp. 73–88, Jan. 2018.DOI:10.1007/s40722-018-0108-DOI
5 
J.-A. Pérez-Rúa, “Solver-free heuristics to retrieve feasible points for offshore wind farm collection system,” Engineering Optimization, vol. 55, no. 10, pp. 1652–1667, Aug. 2022.DOI:10.1080/0305215X.2022.210802DOI
6 
J.-A. Pérez-Rúa, S. Lumbreras, A. Ramos, and N. A. Cutululis, “Reliability-based topology optimization for offshore wind farm collection system,” Wind Energy, vol. 25, no. 1, pp. 52–70, Jun. 2021.DOI:10.1002/we.266DOI
7 
E. Spahic, A. Underbrink, V. Buchert, J. Hanson, I. Jeromin, and G. Balzer, “Reliability model of large offshore wind farms,” in 2009 IEEE Bucharest PowerTech, pp. 1–6, Jun. 2009.DOI:10.1109/PTC.2009.528187DOI
8 
I. Sanz, M. Moranchel, J. Moriano, F. J. Rodriguez, and S. Fernandez, “Reconfiguration Algorithm to Reduce Power Losses in Offshore HVDC Transmission Lines,” IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 3034–3043, Apr. 2018.DOI:10.1109/TPEL.2017.270925DOI
9 
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, and Y. Chen, “Mastering the game of Go without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.DOI:10.1038/nature2427URL
10 
J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, Aug. 2013.DOI:10.1177/027836491349572DOI
11 
S. Kim, and H. Lim, “Reinforcement Learning Based Energy Management Algorithm for Smart Energy Buildings,” Energies, vol. 11, no. 8, pp. 2010, Aug. 2018.DOI:10.3390/en1108201DOI
12 
Q. Yang, G. Wang, A. Sadeghi, G. B. Giannakis, and J. Sun, “Two-Timescale Voltage Control in Distribution Grids Using Deep Reinforcement Learning,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2313–2323, May 2020.DOI:10.1109/tsg.2019.295176DOI
13 
X. Zheng, Y. Ge, Z. Lu, C. Cao, P. Zhou, S. Li, and J. Chen, “Study on Buried Depth Protection Index of Submarine Cable Based on Physical and Numerical Modeling,” Journal of Marine Science and Engineering, vol. 10, no. 2, pp. 137, Jan. 2022.DOI:10.3390/jmse1002013DOI
14 
W. Zhang, Z. Wei, and G. Sun, “Power flow calculation for power system including offshore wind farm,” in 2009 International Conference on Sustainable Power Generation and Supply, pp. 1–6, Apr. 2009.DOI:10.1109/supergen.2009.534812DOI
15 
N. Hammami, and K. K. Nguyen, “On-Policy vs. Off-Policy Deep Reinforcement Learning for Resource Allocation in Open Radio Access Network,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1461–1466, Apr. 2022.DOI:10.1109/wcnc51071.2022.977160DOI
16 
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.DOI:10.48550/arXiv.1312.560URL
17 
Y. Gao, J. Shi, W. Wang, and N. Yu, “Dynamic Distribution Network Reconfiguration Using Reinforcement Learning,” in 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Oct. 2019.DOI:10.1109/smartgridcomm.2019.890977DOI