• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
T. B. Soeiro, and I. W. Kolar, “Analysis of High-Efficiency Three-Phase Two- and Three-Level Unidirectional Hybrid Rectifiers,” in IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3589-3601, Sept. 2013. DOI: 10.1109/TIE.2012.2205358.DOI
2 
W. Ding, C. Zhang, F. Gao, B. Duan, and H. Qiu, “A zero-sequence component injection modulation method with compensation for current harmonic mitigation of a Vienna rectifier,” IEEE Trans. Power Electron, vol. 34, no. 1, pp. 801–814, Jan. 2019. DOI: 10.1109/TPEL.2018.2812810.DOI
3 
Wu, W., Liu, X. & Huang, C., “A DC Charging Pile for New Energy Electric Vehicles,” J. Electr. Eng. Technol., vol. 18, pp. 4301–4319, 2023. DOI: 10.1007/s42835-023-01497-w.DOI
4 
A. S. Satpathy, D. Kastha, and N. K. Kishore, “Vienna Rectifier-Fed Squirrel Cage Induction Generator Based Stand-Alone Wind Energy Conversion System,” in IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10186-10198, Sept. 2021. DOI: 10.1109/TPEL.2021.3062694.DOI
5 
D. Reddy, and S. Ramasamy, “Design of RBFN Controller Based Boost Type Vienna Rectifier for Grid-Tied Wind Energy Conversion System,” in IEEE Access, vol. 6, pp. 3167-3175, Jan. 2018. DOI: 10.1109/ACCESS.2017.2787567.DOI
6 
J. Lee, K. Lee, and F. Blaabjerg, “Predictive Control With Discrete Space-Vector Modulation of Vienna Rectifier for Driving PMSG of Wind Turbine Systems,” in IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 12368-12383, Dec. 2019. DOI: 10.1109/TPEL.2019.2905843.DOI
7 
Brenna, M., Foiadelli, F., Leone, C. et al., “Electric Vehicles Charging Technology Review and Optimal Size Estimation,” J. Electr. Eng. Technol., vol. 15, pp. 2539–2552, 2020. DOI: 10.1007/s42835-020-00547-x.DOI
8 
L. Zhang et al., “A Modified DPWM With Neutral Point Voltage Balance Capability for Three-Phase Vienna Rectifiers,” in IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 263-273, Jan. 2021. DOI: 10.1109/TPEL.2020.3002660.DOI
9 
Y. Zou et al., “Dynamic-Space-Vector Discontinuous PWM for Three-Phase Vienna Rectifiers With Unbalanced Neutral-Point Voltage,” in IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9015-9026, Aug. 2021. DOI: 10.1109/TPEL.2021.3057120.DOI
10 
Y. Pei, Y. Tang, M. Hu, Z. Zhang, and F. Yao, “Switching Loss-Reduced Space-Vector DPWM for Three-Phase Vienna Rectifier Considering Neutral-Point Voltage Fluctuation,” in IEEE Transactions on Power Electronics, vol. 39, no. 12, pp. 16231-16241, Dec. 2024. DOI: 10.1109/TPEL.2024.3446630.DOI
11 
J. -S. Lee, and K. -B. Lee, “Carrier-Based Discontinuous PWM Method for Vienna Rectifiers,” in IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 2896-2900, June 2015. DOI: 10.1109/TPEL.2014.2365014.DOI
12 
Y. Pei, Y. Tang, H. Xu, Z. Shi, and L. Ge, “Optimized Carrier-Based Discontinuous PWM Without Regulating NP Voltage for Three-Level Vienna Rectifier,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 1, pp. 107-117, Feb. 2024. DOI: 10.1109/JESTPE.2023.3322836.DOI
13 
J. -S. Lee, and K. -B. Lee, “Performance Analysis of Carrier-Based Discontinuous PWM Method for Vienna Rectifiers With Neutral-Point Voltage Balance,” in IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4075-4084, June 2016. DOI: 10.1109/TPEL.2015.2477828.DOI
14 
Y. Ming et al., “A Hybrid Carrier-Based DPWM With Controllable NP Voltage for Three-Phase Vienna Rectifiers,” in IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 1874-1884, June 2022. DOI: 10.1109/TTE.2021.3129778.DOI
15 
Z. Zhang et al., “Optimized Carrier-Based DPWM Strategy Adopting Self-Adjusted Redundant Clamping Modes for Vienna Rectifiers With Unbalanced DC Links,” in IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1622-1634, Feb. 2023. DOI: 10.1109/TPEL.2022.3212072.DOI
16 
Z. Zhang, O. C. Thomsen and M. A. E. Andersen, “Discontinuous PWM Modulation Strategy With Circuit-Level Decoupling Concept of Three-Level Neutral-Point-Clamped (NPC) Inverter,” in IEEE Transactions on Industrial Electronics, vol. 60, no. 5, pp. 1897-1906, May 2013. DOI: 10.1109/TIE.2012.2227901.DOI
17 
Lee, J.-Y., Lee, J.-S., “An Improved Zero-Current Distortion Compensation Method for the Soft-Start of the Vienna Rectifier,” Electronics, vol. 13, no. 10, pp. 1806, 2024. DOI: 10.3390/electronics13101806.DOI
18 
Go, YM., Lee, JS., “Offset voltage injection method for neutral-point AC voltage ripple suppression in Vienna rectifiers,” J. Power Electron, vol 23, no. 9, pp. 1400–1410, 2023. DOI: 10.1007/s43236-023-00657-5.DOI
19 
R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Balance,” in IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2509-2522, Nov. 2009. DOI: 10.1109/TPEL.2009.2032262.DOI
20 
J. -S. Lee, and K. -B. Lee, “Time-Offset Injection Method for Neutral-Point AC Ripple Voltage Reduction in a Three-Level Inverter,” in IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 1931-1941, March 2016. DOI: 10.1109/TPEL.2015.2439689.DOI