• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Harriet Ndofor Foleng, Harriet Ndofor Foleng, Ndubuisi Samuel Machebe & Cynthia Ebere Nwobodo “Crop-Livestock Interaction for Sustainable Agriculture,” Innovations in Sustainable Agriculture, pp. 557-582, 2019. DOI:10.1007/978-3-030-23169-9_18DOI
2 
National Institute of Animal Science, “Smart Livestock Statistics 30,” July. 3, 2024.URL
3 
Statistics Korea, “Livestock Farming Households Statistics,” https://kosis.kr/, 2023URL
4 
Chen, C., Zhu, W. and Norton, T., “Behaviour recognition of pigs and cattle: Journey from computer vision to deep learning,” Computers and Electronics in Agriculture, vol. 187, pp. 106255, 2021. DOI:10.1016/j.compag.2021.106255DOI
5 
Y. Peng, Z. Zeng, E. Lv, X. He, B. Zeng, F. Wu and Z. Li, “A real-time automated system for monitoring individual feed intake and body weight of group-housed young chickens,” Applied Sciences, vol. 12, no. 23, pp. 12339, 2022. DOI:10.3390/app122312339DOI
6 
Zheng, Z., Zhang, X., Qin, L., Yue, S. and Zeng, P., “Cows' legs tracking and lameness detection in dairy cattle using video analysis and Siamese neural networks,” Computers and Electronics in Agriculture, vol. 205, pp. 107618, 2023. DOI:10.1016/j.compag.2022.107618DOI
7 
Hu, H., Dai, B., Shen, W., Wei, X., Sun, J., Li, R. and Zhang, Y., “Cow identification based on fusion of deep parts features,” Biosystems Engineering, vol. 192, pp. 245-256, 2020. DOI:10.1016/j.biosystemseng.2020.02.001DOI
8 
Fuentes, A., Yoon, S., Park, J. and Park, D. S., “Deep learning-based hierarchical cattle behavior recognition with spatio-temporal information,” Computers and Electronics in Agriculture, vol. 177, pp. 105627, 2020. DOI:10.1016/j.compag.2020.105627DOI
9 
Molapo, M., Tu, C., Du Plessis, D. and Du, S., “Management and monitoring of livestock in the farm using deep learning,” 2023 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), pp. 1-6, IEEE, Aug. 2023. DOI:10.1109/icABCD.2023.10220556DOI
10 
Li, Z., Song, L., Duan, Y., Wang, Y. and Song, H., “Basic motion behaviour recognition of dairy cows based on skeleton and hybrid convolution algorithms,” Computers and Electronics in Agriculture, vol. 196, pp. 106889, 2022. DOI:10.1016/j.compag.2022.106889DOI
11 
Fang, C., Li, C., Yang, P., Kong, S., Han, Y., Huang, X. and Niu, J., “Enhancing Livestock Detection: An Efficient Model Based on YOLOv8,” Applied Sciences, vol. 14, no. 11, pp. 4809, 2024. DOI:10.3390/app14114809DOI
12 
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning augmentation strategies from data,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113-123, 2019. DOI:10.1109/CVPR.2019.00020DOI
13 
H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017. DOI:10.48550/arXiv.1710.09412DOI
14 
A. Krizhevsky, “Learning multiple layers of features from tiny images,” Technical report, 2009. DOI:10.1.1.222.9220DOI
15 
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, 2009. DOI:10.1109/CVPR.2009.5206848DOI
16 
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, “Reading Digits in Natural Images with Unsupervised Feature Learning,” Neural Information Processing Systems (NIPS), vol. 2011, no. 2, pp. 4, 2011. DOI:10.48550/arXiv.1109.4165DOI
17 
Zhang, Z., Liu, C., Shen, C. & Cao, L. “Bag of freebies for training object detection neural networks,” arXiv preprint arXiv:1902.04103, 2019. DOI:10.48550/arXiv.1902.04103DOI
18 
C. Y. Wang, I. H. Yeh, and H. Y. M. Liao, “Yolov9: Learning what you want to learn using programmable gradient information,” European Conference on Computer Vision, pp. 1-21, Springer, Cham, 2025. DOI:10.1007/978-3-031-72751-1_1DOI
19 
A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020. DOI:10.48550/arXiv.2004.10934DOI
20 
C. Y. Wang, A. Bochkovskiy, and H. Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464-7475, 2023. DOI:10.48550/arXiv.2207.02696DOI
21 
C. Y. Wang, H. Y. M. Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. Yeh, “CSPNet: A new backbone that can enhance learning capability of CNN,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390-391, 2020. DOI:10.1109/CVPRW50498.2020.00203DOI