• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
L. Zhu, S. Z. Jiang, Z. Q. Zhu, and C. C. Chan, “Analytical Methods for Minimizing Cogging Torque in Permanent-Magnet Machines,” in IEEE Transactions on Magnetics, vol. 45, no. 4, pp. 2023-2031, April 2009. DOI:10.1109/TMAG.2008.2011363.DOI
2 
R. Lateb, N. Takorabet, and F. Meibody-Tabar, “Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors,” in IEEE Transactions on Magnetics, vol. 42, no. 3, pp. 442-445, March 2006. DOI:10.1109/TMAG.2005.862756.DOI
3 
N. Chen, S. L. Ho, and W. N. Fu, “Optimization of Permanent Magnet Surface Shapes of Electric Motors for Minimization of Cogging Torque Using FEM,” in IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 2478-2481, June 2010. DOI:10.1109/TMAG.2010.2044764.DOI
4 
J. Ren, X. Wang, W. Zhao, and F. Liu, “Torsional Vibration Analysis and Optimization Design of the Surface PM Synchronous Machine With Reduced Torque Ripple,” in IEEE Transactions on Transportation Electrification, vol. 10, no. 3, pp. 5842-5852, Sept. 2024. DOI:10.1109/TTE.2023.3328196DOI
5 
X. Sun, N. Xu, and M. Yao, “Sequential Subspace Optimization Design of a Dual Three-Phase Permanent Magnet Synchronous Hub Motor Based on NSGA III,” in IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp. 622-630, March 2023. DOI:10.1109/TTE.2022.3190536DOI
6 
M. M. Ismail, W. Xu, X. Wang, A. K. Junejo, Y. Liu, and M. Dong, “Analysis and Optimization of Torque Ripple Reduction Strategy of Surface-Mounted Permanent-Magnet Motors in Flux-Weakening Region Based on Genetic Algorithm,” in IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 4091-4106, July-Aug. 2021. DOI:10.1109/TIA.2021.3074609.DOI
7 
A. -C. Pop, Z. Cai, and J. J. C. Gyselinck, “Machine-Learning Aided Multiobjective Optimization of Electric Machines Geometric-Feasibility and Enhanced Regression Models,” in IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 4, no. 3, pp. 844-854, July 2023. DOI:10.1109/JESTIE.2023.3252404DOI
8 
F. Mahmouditabar, A. Vahedi, M. R. Mosavi, and M. H. J. I. T. o. E. E.S. Bafghi, “Sensitivity analysis and multi-objective design optimization of flux switching permanent magnet motor using MLP‐ANN modeling and NSGA‐II algorithm,” vol. 30, no. 9, pp. e12511, 2020. DOI:10.1002/2050-7038.12511DOI
9 
H. Sasaki, Y. Hidaka, and H. Igarashi, “Prediction of IPM Machine Torque Characteristics Using Deep Learning Based on Magnetic Field Distribution,” in IEEE Access, vol. 10, pp. 60814-60822, 2022. DOI:10.1109/ACCESS.2022.3179835.DOI
10 
K. Iwata, H. Sasaki, H. Igarashi, D. Nakagawa, and T. Ueda, “Generalization Performance in Predicting Torque Characteristics Using Convolutional Neural Network and Stator Magnetic Flux,” in IEEE Transactions on Magnetics, vol. 60, no. 3, pp. 1-4, March 2024. DOI:10.1109/TMAG.2023.3303458DOI
11 
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015 DOI:10.1038/nature14539DOI
12 
S Woo, J Park, JY Lee, IS Kweon, “Cbam: Convolutional block attention module,” Proceedings of the European conference on computer vision (ECCV), 2018. DOI:10.48550/arXiv.1807.06521DOI