• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. Han and A. Papavasiliou, “The impacts of transmission topology control on the European electricity network,” IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 496-507, 2016. DOI:10.1109/TPWRS.2015.2408439DOI
2 
J. H. Kim, B. S. Lee and C. H. Kim, “A study on the development of machine-learning based load transfer detection algorithm for distribution planning,” Energies, vol. 13, no. 17, Art. 4358, 2020. DOI:10.3390/en13174358DOI
3 
M. Sobhani, P. Wang and T. Hong, “Detecting load transfers,” IEEE Transactions on Smart Grid, vol. 14, no. 2, pp. 1367-1375, 2023. DOI:10.1109/TSG.2022.3191734DOI
4 
X. Wang and S.H. Ahn, “Real-time prediction and anomaly detection of electrical load in a residential community,” Applied Energy, vol. 259, Art. 114145, 2020. DOI:10.1016/j.apenergy.2019.114145DOI
5 
J. Zhang, H. Zhang, S. Ding and X. Zhang, “Power consumption predicting and anomaly detection based on Transformer and K-Means,” Frontiers in Energy Research, vol. 9, Art. 779587, 2021. DOI:10.3389/fenrg.2021.779587DOI
6 
M. Karkhaneh and S. Ozgoli, “Anomalous load profile detection in power systems using wavelet transform and robust regression,” Advanced Engineering Informatics, vol. 53, Art. 101639, 2022. DOI:10.1016/j.aei.2022.101639DOI
7 
M. Choubey, R. K. Chaurasiya and J. S. Yadav, “Contrastive learning for efficient anomaly detection in electricity load data,” Sustainable Energy, Grids and Networks, vol. 42, Art. 101639, 2025. DOI:10.1016/j.segan.2025.101639DOI
8 
N. Xiao, “Review of detection methods for abnormal electricity consumption data in smart grid,” International Journal of Computer Science and Information Technology, vol. 3, no. 1, pp. 63-72, 2024. DOI:10.62051/ijcsit.v3n1.10DOI
9 
J. Duan, “Deep learning anomaly detection in AI-powered intelligent power distribution systems,” Frontiers in Energy Research, vol. 12, Art. 1364456, 2024. DOI:10.3389/fenrg.2024.1364456DOI
10 
R. Lin, S. Chen, Z. He, B. Wu, H. Zou, X. Zhao and Q. Li, “Electricity behavior modeling and anomaly detection services based on a deep variational autoencoder network,” Energies, vol. 17, no. 16, Art. 3904, 2024. DOI:10.3390/en17163904DOI
11 
S. M. Miraftabzadeh, M. Longo, S. Leva and N. Matera, “Data anomaly detection in photovoltaic power time-series via unsupervised deep learning with insufficient information,” Sustainable Energy, Grids and Networks, vol. 43, Art. 101769, 2025. DOI:10.1016/j.segan.2025.101769DOI
12 
A. L. Amutha, R. A. Uthra, J. P. Roselyn and R. G. Brunet, “Anomaly detection in multivariate streaming PMU data using density estimation technique in wide-area monitoring system,” Expert Systems with Applications, vol. 175, Art. 114865, 2021. DOI:10.1016/j.eswa.2021.114865DOI
13 
M. Dey, S. P. Rana, C. V. Simmons and S. Dudley, “Solar farm voltage anomaly detection using high-resolution PMU data-driven unsupervised machine learning,” Applied Energy, vol. 303, Art. 117656, 2021. DOI:10.1016/j.apenergy.2021.117656DOI
14 
M. M. Lakouraj, M. Gautam, H. Livani and M. Benidris, “A multi-rate sampling PMU-based event classification in active distribution grids with spectral graph neural network,” Electric Power Systems Research, vol. 221, Art. 108145, 2022. DOI:10.1016/j.epsr.2022.108145DOI
15 
I. Niazazari and H. Livani, “A PMU-data-driven disruptive event classification in distribution systems,” Electric Power Systems Research, vol. 157, pp. 251-260, 2018. DOI:10.1016/j.epsr.2017.12.021DOI
16 
X. Wang, Z. Yao and M. Papaefthymiou, “A real-time electrical load forecasting and unsupervised anomaly detection framework,” Applied Energy, vol. 330, Art. 120279, 2023. DOI:10.1016/j.apenergy.2022.120279DOI
17 
R. Vaish, U. D. Dwivedi, S. Tewari and S. M. Tripathi, “Machine learning applications in power system fault diagnosis: Research advancements and perspectives,” Engineering Applications of Artificial Intelligence, vol. 106, Art. 104504, 2021. DOI:10.1016/j.engappai.2021.104504DOI
18 
R. Pourramezan, H. Karimi and J. Mahseredjian, “Synchrophasor network-based detection and classification of power system events: A singular value decomposition approach,” Electric Power Systems Research, vol. 223, Art. 109645, 2023. DOI:10.1016/j.epsr.2023.109645DOI
19 
Y. Taleb and E. A. K. Cohen, “Multiresolution analysis of point processes and statistical thresholding for Haar wavelet-based intensity estimation,” Annals of the Institute of Statistical Mathematics, vol. 73, no. 3, pp. 395-423, 2021. DOI:10.1007/s10463-020-00753-4DOI
20 
A. Ukil and R. Živanović, “Adjusted Haar wavelet for application in power systems disturbance analysis,” Digital Signal Processing, vol. 18, no. 2, pp. 103-115, 2008. DOI:10.1016/j.dsp.2007.04.001DOI
21 
M. Aqil and A. Jbari, “Electrocardiogram features detection using stationary wavelet transform,” International Journal of Electrical and Computer Engineering, vol. 15, no. 1, pp. 374-385, 2025. DOI:10.11591/ijece.v15i1.pp374-385DOI
22 
H. Wang, F. Zhou, C. Jiang, L. Qin and H. Zhang, “Change point detection for piecewise envelope current signal based on wavelet transform,” Journal of Electrical and Computer Engineering, vol. 2018, Art. 9529870, 2018. DOI:10.1155/2018/9529870DOI
23 
F. T. Liu, K. M. Ting and Z.-H. Zhou, “Isolation forest,” Proceedings of the IEEE International Conference on Data Mining (ICDM), Pisa, Italy, pp. 413-422, 2008. DOI:10.1109/ICDM.2008.17DOI