• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
H. Lin, T. Liang and S. Chen, “Estimation of battery state of health using probabilistic neural network,” IEEE transactions on industrial informatics, vol. 9, no. 2, pp. 679-685, 2012.DOI:10.1109/TII.2012.2222650DOI
2 
Wang, Yujie, et al., “A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems,” Renewable and Sustainable Energy Reviews 131, 2020.DOI:10.1016/j.rser.2020.110015DOI
3 
W. Jingwen, G. Dong and Z. Chen, “Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression,” IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5634-5643, 2017.DOI:10.1109/TIE.2017.2782224DOI
4 
O. Demirci, S. Taskin, E. Schalts, B.A. Demirci, “Review of battery state estimation methods for electric vehicles-Part II: SOH estimation,” Journal of Energy Storage, vol. 96, 2024.DOI:10.1016/j.est.2024.112703DOI
5 
Dini, Pierpaolo, A. Colicelli and S. Saponara, “Review on modeling and soc/soh estimation of batteries for automotive applications,” Batteries, vol. 10, no. 1, 2024.DOI:10.3390/batteries10010034DOI
6 
Wang, H., Pourmousavi, S. A., Soong, W. L., Zhang, X. & Yuan, R, “Accurate battery models matter: Improving battery performance assessment using a novel energy management architecture,” Journal of Power Sources, vol. 631, 2025.DOI:10.1016/j.jpowsour.2025.236216DOI
7 
V. S, H. Che, J. Selvaraj, K. Tey and J. Lee, “State of Health (SoH) estimation methods for second life lithium-ion battery-Review and challenges,” Applied Energy, vol. 369, 2024.DOI:10.1016/j.apenergy.2024.123542DOI
8 
X. Yao, G. Chen, L. Hu and M. Pecht, “A multi-model feature fusion model for lithium-ion battery state of health prediction,” Journal of Energy Storage, vol. 56, 2022.DOI:10.1016/j.est.2022.106051DOI
9 
C. Cheng, R. Xiong, R. Yang and H. Li, “A novel data-driven method for mining battery open-circuit voltage characterization,” Green Energy and Intelligent Transportation, vol. 1, no. 1, 2022DOI:10.1016/j.geits.2022.100001DOI
10 
Y. Li, G. Gao, K. Chen, S He, K. Liu, D. Xin, Y. Lu, Z. Long and G. Wu, “State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model,” Energy, vol. 319, 2025DOI:10.1016/j.energy.2025.135163DOI
11 
T. Oji, Y. Zhou, S. Ci, F. Kang, X. Chen and X. Liu, “Data-driven methods for battery soh estimation: Survey and a critical analysis,” Ieee Access, vol. 9, 2021DOI:10.1109/ACCESS.2021.3111927DOI
12 
Z. Lijun, J. Tuo, Y. Shiha and L. Guanchen, “Accurate prediction approach of SOH for lithium-ion batteries based on LSTM method,” Batterie,s vol. 9, no. 3 2023.DOI:10.3390/batteries9030177DOI
13 
M. Park, J. Lee and B. Kim, “SOH estimation method of lithium ion battery using Continuous Wavelet Transform and CNN,” KIEE Conf, pp. 167-168, 2021.URL
14 
M. Anurag and A. G. Thosar, “RNN and CNN Based Ensemble Models for State-of-Health Prediction of Li-Ion Batteries,” IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT), pp. 128-132, 2024.DOI:10.1109/ICISSGT58904.2024.00035DOI
15 
S. Sridharan, S. Venkataraman, M. Raman and S. P. Raja, “Early prognostics of remaining useful life in lithium ion batteries using hybrid LSTM-Att-MLP model with fusing aging information,” Journal of The Electrochemical Society, vol. 171, no. 8, 2024.DOI:10.1149/1945-7111/ad6d94DOI
16 
K. Severson, P. Attis, N. Jin, N. Perkins, B. Jiang, Z. Yang, M. Chen, M. Aykol, P. Herring, D. Fraggedakis, M. Bazant, S. Harris, W. Chueh and R. Braatz, “Data-driven prediction of battery cycle life before capacity degradation,” Nature Energy, vol. 4, no. 5 pp. 383-391, 2019.DOI:10.1038/s41560-019-0356-8DOI
17 
Stroe, D. Ioan and E. Schaltz, “Lithium-ion battery state-of-health estimation using the incremental capacity analysis technique,” IEEE Transactions on Industry Applications, vol. 56, no. 1, pp.678-685 2019.DOI:10.1109/TIA.2019.2955396DOI