Input : $P$ // Propulsion Power
$\quad \quad\quad E L$ // Electric Load
$\quad \quad$y // ME RPM
Output : $(i, j)$ // Index for Maximum Consumption Gain
$\quad \quad\quad C P^{O p t i}$ // Optimal Charging Power
$\quad \quad \quad D P^{O v t i} \quad / /$ Optimal Discharging Power
$\quad \quad \quad$Consumptiongain $[i][j] \quad / /$ Energy Consumption Gain
Setting : $Batt_{Cap}$ / / Battery Capacity
$\quad \quad \quad$ unit $_C$ // Charging Power Setting Unit
$\quad \quad \quad$ unit $_D / /$ Discharging Power Setting Unit
$\quad \quad \quad$ $f(x, y) \quad / / \mathrm{ME}$ Fuel Consumption Characteristic
$\quad \quad \quad$ $\eta_{E L, y} \quad / /$ Efficiency of Shaft Generator/Motor
Consumptiongain $[a][b]=\{\} \quad / /$ Fuel Consumption Gain(2D)
$S=E L / \eta_{E L, y} / / \mathrm{ME}$ additional Output for SGM at $E J$
$C_{m e}=f(x, y) \times x \quad / /$ ME Fuel Consumption
$n_C=\operatorname{round}\left(\frac{\text { Batt }_{C a p}}{\text { unit }_C}\right)$
// Number of Charging
$n_D=\operatorname{round}\left(\frac{B_{a t t_{C a p}}}{\text { unit }_D}\right)$
// Number of Discharging
for $\mathrm{i}=0$ to $n_C+1$ do
$\enspace \enspace C=i \times$ unit $_C \quad / /$ Calculated Charging Power
$\enspace \enspace S^{\prime}=(E L+C) / \eta_{E L+C v}$
$\enspace \enspace \enspace \enspace \enspace \enspace$ // ME additional Output
for SGM at $E J$ with Charging
$\enspace \enspace C_{m e}^C=f(x+C, y) \times(x+C)$
$\enspace \enspace \enspace \enspace \enspace \enspace$ // ME Fuel Consumption
during Charging
$\enspace \enspace C_{\text {time }}^C=\text { Batt }_{\text {Cap }} / C^{\prime}
\text { // Charging Time }$
for $\mathrm{j}=0$ to $n_D+1$ do
$\enspace \enspace D=i \times \text { unit }_D \quad / / \text { Calculated Discharging
Power }$
$\enspace \enspace S^{\prime}=(E L-D) / \eta_{E L-D y}$
$\enspace \enspace \enspace \enspace \enspace \enspace$ // ME additional Output
for SGM at $E z$ with Discharging
$\enspace \enspace$ C_{m e}^D=f(x-D, y) \times(x-D)
$\enspace \enspace \enspace \enspace \enspace \enspace$ // ME Fuel Consumption
during Discharging
$\enspace \enspace C_{\text {time }}^D=B_{\text {Bat }} t_{C a p} / D^{\prime \prime}
\quad / / \text { Discharging Time }$
$(i, j)=\max _{i, j}$ consumption gain
$C P^{\text {Ovti }}=i \times$ unit $_C$
$D P^{O p t i}=j \times$ unit $_D$
Consumptiongain $[i][j]$
$$=\left\{\frac{C_{t i m e}^D\left(C_{m e}-C_{m e}^D\right)-C_{\text {time }}^C\left(C_{m
e}^C-C_{m e}\right)}{C_{\text {time }}^C+C_{\text {time }}^D}\right\}$$
|