• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electrical Engineering, Chonnam National University, Gwangju, Republic of Korea.)



Electric Vehicle Charging Station, Uncertainty, Distributionally Robust Optimization, Distributionally Robust Chance Constrained Programming

ํ‘œ 1 ๋…ผ๋ฌธ์—์„œ ์“ฐ์ธ ์ฃผ์š” ๋ณ€์ˆ˜

๊ธฐํ˜ธ

๊ธฐํ˜ธ์— ๋Œ€ํ•œ ์„ค๋ช…

$P_{t}^{{buy}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ์ „๋ ฅ ๊ตฌ๋งค๋Ÿ‰
$P_{t}^{{sell}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ์ „๋ ฅ ํŒ๋งค๋Ÿ‰
$\widetilde{P_{t}^{{EV}}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ๋ถˆํ™•์‹คํ•œ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰
$\widetilde{P_{t}^{{PV}}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ๋ถˆํ™•์‹คํ•œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰
$P_{t}^{{PV},\:{EV}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์œผ๋กœ๋ถ€ํ„ฐ ์ถฉ์ „๋˜๋Š” ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰
$P_{t}^{{grid},\:{EV}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ์ „๋ ฅ๋ง์œผ๋กœ๋ถ€ํ„ฐ ์ „๊ธฐ์ฐจ ์ถฉ์ „์„ ์œ„ํ•ด ๊ตฌ๋งคํ•˜๋Š” ์–‘
$P_{t}^{{EV},\:{r}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ์ด์›”๋œ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰
$SOC_{t}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ์—๋„ˆ์ง€ ์ถฉ์ „์žฅ์น˜์˜ ์ถฉ์ „์ƒํƒœ
$P_{t}^{{ch}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ์ถฉ์ „๋Ÿ‰
$P_{t}^{{grid},\:{ch}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ์ „๋ ฅ๋ง์œผ๋กœ๋ถ€ํ„ฐ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜ ์ถฉ์ „์„ ์œ„ํ•ด ๊ตฌ๋งคํ•˜๋Š” ์–‘
$P_{t}^{{PV},\:{ch}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ํƒœ์–‘๊ด‘์œผ๋กœ๋ถ€ํ„ฐ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜ ์ถฉ์ „์„ ์œ„ํ•ด ๊ตฌ๋งคํ•˜๋Š” ์–‘
$P_{t}^{{dch}}$ $t$์‹œ๊ฐ„๋Œ€์—์„œ์˜ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ๋ฐฉ์ „๋Ÿ‰

1. Introduction

์ตœ๊ทผ ์ „๊ธฐ์ฐจ๊ฐ€ ๊ธฐ์กด ๋‚ด์—ฐ๊ธฐ๊ด€ ์ฐจ๋Ÿ‰์„ ๋น ๋ฅด๊ฒŒ ๋Œ€์ฒดํ•˜๋ฉฐ ํšจ์œจ์ ์ธ ์ „๊ธฐ์ฐจ ์ถฉ์ „ ์ธํ”„๋ผ ์šด์˜์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ปค์ ธ๊ฐ€๊ณ  ์žˆ๋‹ค. ํšจ์œจ์ ์ธ (ex. ์ˆ˜์ต์„ฑ์ด ์ข‹์€) ์ถฉ์ „ ์ธํ”„๋ผ ์šด์˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ถฉ์ „ ์ธํ”„๋ผ ๋ณด๊ธ‰ ๊ฐ€์†ํ™”์— ๊ธฐ์—ฌํ•  ๊ฒƒ์ด๋ฉฐ, ์ด๊ฒƒ์€ ๊ถ๊ทน์ ์œผ๋กœ ์ „๊ธฐ์ฐจ๋กœ์˜ ์ „ํ™˜์— ํฐ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.

์ตœ๊ทผ ๋‹ค์–‘ํ•œ ๋ถ„์‚ฐ ์—๋„ˆ์ง€์› (ex. ํƒœ์–‘๊ด‘ ๋ฐœ์ „์žฅ์น˜, ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜) ์˜ ๊ธฐ์ˆ ์ด ๊ณ ๋„ํ™”๋˜๋ฉฐ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ๋ฅผ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ์ฐจ์„ธ๋Œ€ ์—๋„ˆ์ง€ ์šด์˜ ์ธํ”„๋ผ์— ํ™œ์šฉ๋  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜๋ฉฐ ์ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋˜ํ•œ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค[1,2,3]. ํ•˜์ง€๋งŒ ์ถฉ์ „์†Œ์˜ ์‹ ์žฌ์ƒ ์—๋„ˆ์ง€ ๊ณต๊ธ‰์›์ด ๋˜์–ด์ค„ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์€ ๋ถˆํ™•์‹คํ•œ ์—๋„ˆ์ง€ ํ™˜๊ฒฝ ์š”์†Œ๋กœ์„œ, ์ •ํ™•ํ•˜์ง€ ๋ชปํ•œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์— ๋Œ€ํ•œ ๊ณ ๋ ค๋Š” ๋น„ํšจ์œจ์ ์ธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์šด์˜์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ถฉ์ „์†Œ์˜ ์ถฉ์ „๋Œ€์ƒ์ธ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋ถ€ํ•˜ ๋˜ํ•œ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ํž˜๋“  ์—๋„ˆ์ง€ ํ™˜๊ฒฝ ์š”์†Œ๋กœ์„œ, ์ด์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ ๋˜ํ•œ ์ถฉ์ „์†Œ์˜ ํšจ์œจ์ ์ธ ์—๋„ˆ์ง€ ์šด์˜์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.

์ด๋Ÿฌํ•œ ๋ถˆํ™•์‹คํ•œ ์—๋„ˆ์ง€ ํ™˜๊ฒฝ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•œ ์ตœ์ ์˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ๋ฐ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์˜ ์—๋„ˆ์ง€ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด stochastic ์ตœ์ ํ™” ๊ธฐ๋ฒ•, robust ์ตœ์ ํ™” ๊ธฐ๋ฒ•, ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•๋“ค์„ ์ ์šฉํ•œ ์—ฐ๊ตฌ๋“ค์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค[4,5]. ํ•˜์ง€๋งŒ ๊ธฐ์กด์˜ ์—ฐ๊ตฌ๋“ค์€ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ํ™•๋ฅ  ๋ถ„ํฌ ์ •๋ณด๋ฅผ ์ •ํ™•ํžˆ ์•Œ๊ณ  ์žˆ์–ด์•ผ ํ•œ๋‹ค๊ฑฐ๋‚˜ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•ด ์ง€๋‚˜์น˜๊ฒŒ ๋ณด์ˆ˜์ ์œผ๋กœ ๊ณ ๋ คํ•œ๋‹ค๋Š” ๋‹จ์ ๋“ค์ด ์กด์žฌํ•˜์˜€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ํ™•๋ฅ ๋ถ„ํฌ ๊ธฐ๋ฐ˜์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ํ™œ์šฉํ•œ ์ตœ์ ํ™” ๋ฌธ์ œ ์„ค๊ณ„๋Š” ๋ฌดํ•œ ์ฐจ์›์˜ ๋ฌธ์ œ๋กœ ์„ค๊ณ„๋˜์–ด ๋‹คํ•ญ์‹ ์‹œ๊ฐ„ ์ด๋‚ด์— ๊ณ„์‚ฐํ•  ์ˆ˜ ์—†๋‹ค๋Š” ๋‹จ์  ๋˜ํ•œ ์กด์žฌํ•œ๋‹ค.

์œ„์— ์–ธ๊ธ‰๋œ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์— ๋Œ€ํ•œ ํ•œ๊ณ„์ ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” (distributionally robust optimization, DRO)๋ฅผ ํ™œ์šฉํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ตœ๊ทผ ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค[6,7]. ํ•ด๋‹น ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ ๊ตฌ๊ฐ„์ด ์ •ํ•ด์ง„ ๋žœ๋ค๋ณ€์ˆ˜ ๋ฒ”์œ„ ์•ˆ์—์„œ ์ƒ˜ํ”Œ๋ง๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ํ•ด๋‹น ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์—ฐ์‚ฐ๊ธฐ๋ฒ•์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์‹œ๊ฐ„๋Œ€๋ณ„ ์ „๊ธฐ์—๋„ˆ์ง€ ๊ฐ€๊ฒฉ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ๊ทธ๋ฆฌ๊ณ  ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ์‹์œผ๋กœ ๊ณ ๋ คํ•œ ์ตœ์ ์˜ ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ (i.e., ํƒœ์–‘๊ด‘ ๋ฐœ์ „ ์‹œ์Šคํ…œ๊ณผ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜๊ฐ€ ๊ฒฐํ•ฉ๋œ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ) ์—๋„ˆ์ง€ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ๊ฐ€์ง€๋Š” ๊ธฐ์—ฌ์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์š”์•ฝํ•œ๋‹ค.

โ€ข ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์šด์˜ ์ค‘ ๋ฐœ์ƒํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ๋ถˆํ™•์‹ค์„ฑ ์š”์†Œ์ธ ์ „๊ธฐ์—๋„ˆ์ง€ ๊ฐ€๊ฒฉ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ชจ๋‘ ๊ณ ๋ คํ•œ ์ตœ์ ์˜ ์—๋„ˆ์ง€ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ ์„ค๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค.

โ€ข ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์ƒ˜ํ”Œ๋ง ๋ฐฉ์‹์„ ํ™œ์šฉํ•œ ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์•Œ์ง€ ๋ชปํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ๋„ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ๋‚ด ๋ถˆํ™•์‹ค์„ฑ ์š”์†Œ๋“ค์— ๋Œ€ํ•œ ์ตœ์ ์˜ ์—๋„ˆ์ง€ ์šด์˜ ์†”๋ฃจ์…˜์„ ๋„์ถœํ•œ๋‹ค.

โ€ข ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ์—๋„ˆ์ง€ ์šด์˜ ์กฐ๊ฑด์— ๋Œ€ํ•ด ๋ถ„ํฌ ๊ฐ•๊ฑด ๊ธฐ๋ฐ˜์˜ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์„ ์„ค์ •ํ•˜์—ฌ ์ด๋“ค์˜ ์—๋„ˆ์ง€ ์šด์˜ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๋ถˆํ™•์‹ค์„ฑ ๋ฒ”์œ„๋ฅผ ์ƒˆ๋กญ๊ฒŒ ๋„์ถœํ•˜์—ฌ ๋ฌธ์ œ๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค.

๋ณธ ๋…ผ๋ฌธ์€ 2์žฅ์—์„œ๋Š” ์ œ์•ˆํ•œ ์—ฐ๊ตฌ์˜ ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ๋ฐ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์— ์‚ฌ์šฉ๋˜๋Š” Wasserstein metric์„ ์†Œ๊ฐœํ•˜๋ฉฐ, 3์žฅ์—์„œ๋Š” ์ œ์•ˆํ•œ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ํ•จ์ˆ˜, ์ œ์•ฝ์กฐ๊ฑด ๊ทธ๋ฆฌ๊ณ  ์„ค๊ณ„๋œ ๋ฌธ์ œ์˜ ์žฌ์„ค๊ณ„ (reformulation) ์— ๋Œ€ํ•ด ์†Œ๊ฐœ๋œ๋‹ค. 4์žฅ์—์„œ๋Š” ์ œ์•ˆํ•œ ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„์ด ์†Œ๊ฐœ๋˜๋ฉฐ, ๋งˆ์ง€๋ง‰์œผ๋กœ 5์žฅ์—์„œ๋Š” ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๋ก ๊ณผ ํ•จ๊ป˜ ๋…ผ๋ฌธ์ด ๋งˆ๋ฌด๋ฆฌ๋œ๋‹ค.

2. Backgrounds

2.1 Wasserstein metric

ํ•ด๋‹น ๊ธฐ๋ฒ•์€ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ๋‹ค๋ฅธ 2๊ฐœ์˜ ํ™•๋ฅ ๋ถ„ํฌ์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ์„œ, ์„ค๊ณ„ํ•œ ๋ฌธ์ œ ๋‚ด์—์„œ ๊ณ ๋ คํ•  ๋ถˆํ™•์‹ค์„ฑ์˜ ๋ฒ”์œ„๋ฅผ ํ™•๋ฅ ๋ถ„ํฌ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋œ๋‹ค. ์ด๋•Œ ๊ฐ™์€ ํ™•๋ฅ ๋ณ€์ˆ˜ ์ง‘ํ•ฉ ์•ˆ์— ์žˆ๋Š” ๋‹ค๋ฅธ 2๊ฐœ์˜ ํ™•๋ฅ ๋ถ„ํฌ $\vec{P_{1}}$, $\vec{P_{2}}$์˜ Wasserstein distance๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค[8].

(1)
$d_W(\mathbb{P}_1, \mathbb{P}_2) := \inf \left\{ \int \| \tilde{\xi}_1 - \tilde{\xi}_2 \| \, \Pi(\mathrm{d}\tilde{\xi}_1, \mathrm{d}\tilde{\xi}_2) \right\}$

์ด๋•Œ, $\widetilde{\xi_{1}}$์™€ $\widetilde{\xi_{2}}$๋Š” $\vec{P_{1}}$์™€ $\vec{P_{2}}$์˜ ๋žœ๋ค ๋ณ€์ˆ˜์ด๊ณ , $\Pi$๋Š” 2๊ฐœ์˜ ๋žœ๋ค๋ณ€์ˆ˜์˜ ๊ฒฐํ•ฉ ๋ถ„ํฌ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. Wasserstein metric์„ ํ™œ์šฉํ•œ ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ๊ธฐ๋ฒ•์—์„œ๋Š” ๊ธฐ์ค€์ด ๋˜๋Š” $N$๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ฒฝํ—˜์  ๋ถ„ํฌ $\hat{\vec{P_{N}}}$ ๋กœ๋ถ€ํ„ฐ $\epsilon$ ๋‚ด์˜ ($N$๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋กœ ์ด๋ฃจ์–ด์ง„) ํ™•๋ฅ ๋ถ„ํฌ ๋ฐ์ดํ„ฐ์…‹ ${P}_{N}$ ๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ค๊ณ„ํ•œ ๋ฌธ์ œ ๋‚ด์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ๋‹ค. ${P}_{N}$์— ๋Œ€ํ•œ ์ •์˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

(2)
$\mathbb{P}_N = \left\{ \mathbb{P} : d_W(\mathbb{P}, \widehat{\mathbb{P}}_N) \leq \epsilon \right\}$

Wasserstein metric ๊ธฐ๋ฐ˜์˜ ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ ${P}_{N}$์— ๋งŒ์กฑํ•˜๋Š” ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถˆํ™•์‹ค์„ฑ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•˜๋ฉฐ, ๊ทธ๊ฒƒ์€ ์ง€๋‚˜์น˜๊ฒŒ ๋ณด์ˆ˜์ ์ธ ($\epsilon$์ด๋‚ด์— ๋“ค์–ด์˜ค์ง€ ๋ชปํ•œ ํ™•๋ฅ ๋ถ„ํฌ์˜ ๋ฐ์ดํ„ฐ) ๋ถˆํ™•์‹ค์„ฑ ๊ณ ๋ ค๋ฅผ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ํ•ด๋‹น ๊ธฐ๋ฒ•์€ ๋‹ค๋ฃจ๊ณ ์ž ํ•˜๋Š” ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ํ™•๋ฅ ๋ถ„ํฌ ์ •๋ณด๋ฅผ ์ •ํ™•ํžˆ ์•„๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ${P}_{N}$๋‚ด ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ํ™•๋ฅ ๋ถ„ํฌ ์ •๋ณด๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ๊ธฐ๋ฒ•์ด๋ผ๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ์‹œ๊ฐ„๋Œ€๋ณ„ ์ „๊ธฐ์—๋„ˆ์ง€ ๊ตฌ๋งค๊ฐ€๊ฒฉ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰, ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ์ตœ์  ์—๋„ˆ์ง€ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด Wasserstein metric ๊ธฐ๋ฐ˜์˜ ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€๋‹ค. ์œ„ 3๊ฐ€์ง€ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ์ตœ์  ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์šด์˜์— ๋Œ€ํ•œ ์„ค๊ณ„๋Š” ๋‹ค์Œ์žฅ ์†Œ๊ฐœ๋œ๋‹ค.

3. Problem Formulations

์ด๋ฒˆ ์žฅ์—์„œ๋Š” ์ œ์•ˆํ•œ ์ตœ์  ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์—๋„ˆ์ง€ ์šด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ์ˆ˜์‹์  ์„ค๊ณ„๋ฅผ ์†Œ๊ฐœํ•œ๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ ๋‹ค๋ฃจ๋Š” ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ๋Š” ๊ธฐ์กด์˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ๋‹จ์ผ์˜ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์žฅ์น˜์™€ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜๊ฐ€ ๊ฒฐํ•ฉ๋œ ๊ตฌ์กฐ์˜ ์ถฉ์ „์†Œ๋‹ค. ์—ฐ๊ฒฐ๋œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์žฅ์น˜๋กœ๋ถ€ํ„ฐ ๋ฐœ์ „๋œ ์—๋„ˆ์ง€๋Š” ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ์ถฉ์ „ ์—๋„ˆ์ง€๋กœ ๋ณด์กฐ๋˜๊ฑฐ๋‚˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์œผ๋กœ ์“ฐ์ธ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜๋Š” ์•ž์„œ ์–ธ๊ธ‰๋œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์œผ๋กœ๋ถ€ํ„ฐ ์—๋„ˆ์ง€๋ฅผ ์ถฉ์ „ํ•˜๊ฑฐ๋‚˜ ์—ฐ๊ฒฐ๋œ ์ „๋ ฅ๋ง์œผ๋กœ๋ถ€ํ„ฐ ๊ตฌ๋งคํ•œ ์—๋„ˆ์ง€๋กœ ์ถฉ์ „ํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐœ๋ณ„ ์ „๊ธฐ์ฐจ์— ๋Œ€ํ•œ ์ถฉ์ „์„ ๋‹ค๋ฃจ์ง€ ์•Š์œผ๋ฉฐ, ํ•ฉ์ณ์ง„ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์„ ๊ณ ๋ คํ•˜์—ฌ ์ถฉ์ „์†Œ์˜ ์—๋„ˆ์ง€ ์šด์˜์„ ๊ณ„ํšํ•œ๋‹ค. ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ๋Š” ๋‹จ์œ„ ์—๋„ˆ์ง€๋‹น ํŒ๋งค๊ฐ€๊ฒฉ์€ ๋‹จ์ผ ๊ฐ’์œผ๋กœ ์„ค์ •ํ•˜์ง€๋งŒ, ์ „๋ ฅ๋ง๋กœ๋ถ€ํ„ฐ ๊ตฌ๋งคํ•˜๋Š” ๋‹จ์œ„ ์—๋„ˆ์ง€๋‹น ๊ตฌ๋งค๊ฐ€๊ฒฉ์€ ์‹œ๊ฐ„๋Œ€๋ณ„๋กœ ๋ณ€ํ™”ํ•˜๋ฉฐ ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋Š” ํ™˜๊ฒฝ ์š”์†Œ๋กœ ๊ฐ€์ •ํ•œ๋‹ค. ์ด์™ธ์—๋„ ์‹œ๊ฐ„๋Œ€๋ณ„ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰๋„ ๊ฒฐ์ •๋˜์–ด ์žˆ์ง€ ์•Š์œผ๋ฉฐ ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ, ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ์˜ ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ๋ชฉ์ ํ•จ์ˆ˜๋Š” ์‹œ๊ฐ„๋Œ€๋ณ„ ์—๋„ˆ์ง€ ๊ตฌ๋งค๊ฐ€๊ฒฉ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰, ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ (์—๋„ˆ์ง€ ํŒ๋งค๋ฅผ ํ†ตํ•œ) ์ด์ต์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ตœ์  ์—๋„ˆ์ง€ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์„ ๋„์ถœํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

3.1 Objective function

์ œ์•ˆํ•œ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ํ•จ์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ค๊ณ„๋œ๋‹ค.

(3)
$\max J_{1}-J_{2}$
(4)
$J_{1}=\sum_{t=1}^{T}\pi^{{sell}}P_{t}^{{sell}}\Delta t$
(5)
$J_{2}= {sup}_{\mathbb{P}\in{P}_{N^{{buy}}}}\mathbb{E^{\mathbb{P}}}\left[\sum_{t=1}^{T}\widetilde{\pi_{{t}}^{{buy}}}P_{t}^{{buy}}\Delta t\right]$

๋ชฉ์ ํ•จ์ˆ˜๋Š” $J_{1}-J_{2}$ ๋ฅผ ์ตœ๋Œ€ํ™” ํ•˜๋Š” ๊ฒƒ์œผ๋กœ์„œ, ํ•˜๋ฃจ๋™์•ˆ์˜ ์—๋„ˆ์ง€ ํŒ๋งค๋กœ ์ธํ•œ ๋งค์ถœ ($J_{1}$) ์—์„œ ์—๋„ˆ์ง€ ๊ตฌ๋งค๋กœ ์ธํ•œ ์†Œ๋น„ ($J_{2}$) ์— ๋Œ€ํ•œ ์ฐจ์ด๋ฅผ ์ตœ๋Œ€ํ™” ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋•Œ, $J_{1}$์€ ์‹œ๊ฐ„๋Œ€๋ณ„ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ๋งค์ถœ (์—๋„ˆ์ง€ ํŒ๋งค๋Ÿ‰ $P_{t}^{{sell}}$๊ณผ (๋‹จ์ผ์˜) ํŒ๋งค ์—๋„ˆ์ง€ ๊ฐ€๊ฒฉ์˜ ๊ณฑ)์— ๋Œ€ํ•œ ํ•ฉ์œผ๋กœ ์ •์˜๋˜๋ฉฐ, $J_{2}$๋Š” Wasserstein metric ๊ธฐ๋ฐ˜์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ ํ™•๋ฅ ๋ถ„ํฌ ๋ฐ์ดํ„ฐ์…‹ $P_{N^{{buy}}}$ ์„ ํ™œ์šฉํ•˜์—ฌ ์‹œ๊ฐ„๋Œ€๋ณ„ ์—๋„ˆ์ง€ ๊ตฌ๋งค๊ฐ€๊ฒฉ์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ ($\widetilde{\pi_{t}^{{buy}}}$)์„ ๊ณ ๋ คํ•œ ์ตœ์  ์—๋„ˆ์ง€ ์†Œ๋น„์˜ ํ•ฉ์œผ๋กœ ์ •์˜๋œ๋‹ค. $N^{{buy}}$๋Š” ๋ถˆํ™•์‹คํ•œ ์—๋„ˆ์ง€ ๊ตฌ๋งค๊ฐ€๊ฒฉ์— ๋Œ€ํ•œ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํ™•๋ฅ ๋ถ„ํฌ ๊ธฐ๋ฐ˜์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ํ™œ์šฉํ•œ ์ตœ์ ํ™” ๋ฌธ์ œ ์„ค๊ณ„๋Š” ๋ถ„ํฌ๊ฐ€ ๋ถˆ๋ช…ํ™•ํ•œ ํ™•๋ฅ ๋ณ€์ˆ˜๊ฐ€ ํฌํ•จ๋œ ๋ฌดํ•œ ์ฐจ์›์˜ ๋ฌธ์ œ๋กœ ์„ค๊ณ„๋˜์–ด ์ƒ์šฉ ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ๊ตฌํ˜„ํ•˜๊ธฐ ํž˜๋“ค๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ์„ค๊ณ„ํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ์„ ๊ฐœ์„ ํ•˜์—ฌ ์ˆ˜์น˜์  ๋ถ„์„์„ ์ง„ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์„ค๊ณ„ํ•œ ํ™•๋ฅ ๋ถ„ํฌ ๊ธฐ๋ฐ˜์˜ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ฐ•ํ•œ ์Œ๋Œ€์„ฑ ์ด๋ก  (strong duality)์„ ํ™œ์šฉํ•˜์—ฌ ์œ ํ•œ ์ฐจ์›์˜ ๋ณผ๋ก (convex) ํ˜•์‹์œผ๋กœ์˜ ์žฌ์„ค๊ณ„๋ฅผ ํŽ˜์ด์ง€ 4์˜ (23)๊ณผ (24)์— ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ์žฌ์„ค๊ณ„์— ๋Œ€ํ•œ ์„ค๋ช…์€ 3.4์žฅ์— ์ž์„ธํ•˜๊ฒŒ ์„ค๋ช…๋œ๋‹ค.

3.2 Constraints

์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ œ์•ฝ์กฐ๊ฑด์„ ๋”ฐ๋ผ ์—๋„ˆ์ง€๋ฅผ ์šด์˜ํ•œ๋‹ค.

(6)
$P_{t}^{{buy}}= P_{t}^{{grid},\:{EV}}+ P_{t}^{{grid},\:{ch}}$
(7)
$P_{t}^{{sell}}= P_{t}^{{grid},\:{EV}}+ P_{t}^{{dch}}+ P_{t}^{{PV},\:{EV}}$
(8)
$P_{t}^{{EV},\:{r}}=\left(\widetilde{P_{t}^{{EV}}}+ P_{t-1}^{{EV},\:{r}}\right)- P_{t}^{{sell}}(P_{0}^{{EV},\:{r}}= 0)$
(9)
$P_{t}^{{EV},\:{r}}= 0{for}{t}={mt}_{{p}},\: ({m}\in\mathbb{Z^{+}})$
(10)
$P_{t}^{{ch}}= P_{t}^{{grid},\:{ch}}+ P_{t}^{{PV},\:{ch}}$
(11)
$\widetilde{P_{t}^{{PV}}}= P_{t}^{{PV},\:{EV}}+ P_{t}^{{PV},\:{ch}}$
(12)
$SOC_{t}= SOC_{t-1}+\dfrac{\left(\eta^{{ch}}P_{t}^{{ch}}-\dfrac{P_{t}^{{dch}}}{\eta^{{dch}}}\right)}{E^{cap}}\Delta t$
(13)
$P_{t}^{{buy}},\: P_{t}^{{sell}}\le P^{{tr}}$
(14)
$P_{t}^{{sell}}\le\widetilde{P_{t}^{{EV}}}+ P_{t-1}^{{EV},\:{r}}$
(15)
$SOC_{\min}\le SOC_{t}\le SOC_{\max}$
(16)
$0\le P_{t}^{{ch}}\le P_{\max}^{{ch}}b_{t}^{{ESS}}$
(17)
$0\le P_{t}^{{dch}}\le P_{\max}^{{dch}}(1 - b_{t}^{{ESS}})$
(18)
$0\le P_{t}^{{grid},\:{EV}},\: P_{t}^{{grid},\:{ch}},\: P_{t}^{{PV},\:{EV}}$
(19)
$b_{t}^{{ESS}}\in\{0,\: 1\}$

(6)์€ ๋งค ์‹œ๊ฐ„ $t$์—์„œ์˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ์ „๋ ฅ ๊ตฌ๋งค๋Ÿ‰$(P_{t}^{{buy}})$ ์„ ์ „๊ธฐ์ฐจ ์ถฉ์ „์„ ์œ„ํ•ด ๊ตฌ๋งคํ•˜๋Š” ์–‘ $(P_{t}^{{grid},\:{EV}})$ ๊ณผ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜ ์ถฉ์ „์„ ์œ„ํ•ด ๊ตฌ๋งคํ•˜๋Š” ์–‘ $(P_{t}^{{grid},\:{ch}})$ ์˜ ํ•ฉ์œผ๋กœ ์ •์˜ํ•˜์˜€๊ณ , (7)์€ ๋งค ์‹œ๊ฐ„ $t$์—์„œ์˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ์ „๋ ฅ ํŒ๋งค๋Ÿ‰ $(P_{t}^{{sell}})$ ์ „๊ธฐ์ฐจ ์ถฉ์ „์„ ์œ„ํ•ด i) ์ „๋ ฅ๋ง์œผ๋กœ๋ถ€ํ„ฐ ๊ตฌ๋งคํ•œ ์–‘ $(P_{t}^{{grid},\:{EV}})$ , ii) ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ๋ฐฉ์ „๋Ÿ‰ $(P_{t}^{{dch}})$, iii) ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์œผ๋กœ๋ถ€ํ„ฐ ๋ณด์กฐ ๋ฐ›์€ ์ „๋ ฅ๋Ÿ‰ $(P_{t}^{{PV},\:{EV}})$ ์˜ ํ•ฉ์œผ๋กœ ์ •์˜ํ•˜์˜€๋‹ค. (8)์—์„œ๋Š” ๋งค ์‹œ๊ฐ„ $t$์—์„œ์˜ ์ž”์—ฌ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ $(P_{t}^{{EV},\:{r}})$์„ ์ •์˜ํ•˜์˜€์œผ๋ฉฐ, ์ถฉ์ „์†Œ๋Š” ํ•ด๋‹น ์‹œ๊ฐ„๋Œ€์˜ ํ•ฉ์ณ์ง„ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ $\left(\widetilde{P_{t}^{{EV}}}+ P_{t-1}^{{EV},\:{r}}\right)$ ์„ ๊ณต๊ธ‰ํ•˜์ง€ ๋ชปํ•  ๊ฒฝ์šฐ ์ž”์—ฌ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์„ ๋‹ค์Œ ์‹œ๊ฐ„๋Œ€๋กœ ์ด์›”์‹œํ‚จ๋‹ค๊ณ  ์„ค์ •ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  (9)์—์„œ๋Š” ์ •ํ•ด์ง„ ์ฃผ๊ธฐ $m$์‹œ๊ฐ„๋Œ€๋งˆ๋‹ค ์ž”์—ฌ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ $(P_{t}^{{EV},\:{r}})$ ์„ 0์œผ๋กœ ๋งŒ๋“ค์–ด ์ง€์†์ ์ธ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ ์ด์›”์„ ๋ฐฉ์ง€ํ•˜์˜€๋‹ค. (10) ์€ ๋งค ์‹œ๊ฐ„ $t$์—์„œ์˜ ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜ ์ถฉ์ „๋Ÿ‰ $(P_{t}^{{ch}})$ ์„ ์ „๋ ฅ๋ง์œผ๋กœ๋ถ€ํ„ฐ ๊ตฌ๋งคํ•˜๋Š” ์–‘ $(P_{t}^{{grid},\:{ch}})$ ๊ณผ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์œผ๋กœ๋ถ€ํ„ฐ ๋ณด์กฐ๋ฐ›๋Š” ์–‘ $(P_{t}^{{PV},\:{ch}})$ ์˜ ํ•ฉ์œผ๋กœ ์ •์˜ํ•˜์˜€์œผ๋ฉฐ, (11)์€ ๋งค ์‹œ๊ฐ„ $t$์—์„œ์˜ ๋ถˆํ™•์‹คํ•œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ $(\widetilde{P_{t}^{{PV}}})$ ์€ ํ•ด๋‹น ์‹œ๊ฐ„๋Œ€์˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์„ ๋ณด์กฐํ•˜๊ฑฐ๋‚˜ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜ ์ถฉ์ „๋Ÿ‰์„ ๋ณด์กฐํ•œ๋‹ค๊ณ  ์„ค๊ณ„ํ•˜์˜€๋‹ค. (12)์—์„œ๋Š” ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ๋งค ์‹œ๊ฐ„ $t$์—์„œ ๋ฐฐํ„ฐ๋ฆฌ ์ถฉ์ „ ์ƒํƒœ (SOC) $(SOC_{t})$ ์— ๋Œ€ํ•œ ๋™์  ๋ฐฉ์ •์‹์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ์šฉ๋Ÿ‰ $(E^{cap})$ ๋Œ€๋น„ ์ถฉ์ „๋Ÿ‰ $(P_{t}^{{ch}})$์˜ ํ•ฉ๊ณผ ๋ฐฉ์ „๋Ÿ‰ $(P_{t}^{{dch}})$์˜ ์ฐจ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค ($\eta^{{ch}}$์™€ $\eta^{{dch}}$์€ ๊ฐ๊ฐ ์ถฉ์ „ ๋ฐ ๋ฐฉ์ „ ํšจ์œจ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค). (13)์—์„œ๋Š” ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ๊ตฌ๋งค $(P_{t}^{{buy}})$, ํŒ๋งค ์ „๋ ฅ๋Ÿ‰ $(P_{t}^{{sell}})$ ์€ ๋ณ€์••๊ธฐ ์ „๋ ฅ๋Ÿ‰ ($P^{{tr}}$) ์ดํ•˜๋กœ ์„ค์ •ํ•˜๋ฉฐ, (14)์—์„œ ํŒ๋งค ์ „๋ ฅ๋Ÿ‰ $(P_{t}^{{sell}})$ ์€ ํ•ด๋‹น ์‹œ๊ฐ„๋Œ€์˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ $(\widetilde{P_{t}^{{EV}}})$ ๊ณผ ์ด์ „ ์‹œ๊ฐ„๋Œ€์˜ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ ์ด์›”๋Ÿ‰ $(P_{t-1}^{{EV},\:{r}})$ ์˜ ํ•ฉ ์ดํ•˜๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค. (15)์—์„œ๋Š” SOC ๋ฒ”์œ„์— ๋Œ€ํ•œ ์ œ์•ฝ์กฐ๊ฑด์„ SOC ์ตœ์†Œ $(SOC_{\min})$, ์ตœ๋Œ€ $(SOC_{\max})$ ๊ฐ’์œผ๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  (16)๊ณผ (17)์—์„œ๋Š” ์ด์ง„๋ณ€์ˆ˜ $b_{t}^{{ESS}}$๋ฅผ ํ™œ์šฉํ•œ ๋งค ์‹œ๊ฐ„ $t$์—์„œ์˜ ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์ถฉ์ „ยท๋ฐฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ๋ฒ”์œ„๋ฅผ ์ตœ๋Œ€ ์ถฉ์ „ $(P_{\max}^{{ch}})$ ๋ฐ ๋ฐฉ์ „๋Ÿ‰ $(P_{\max}^{{dch}})$ ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋•Œ, $b_{t}^{{ESS}}$๊ฐ€ 1์ผ๋•Œ๋Š” ์ถฉ์ „์„ ํ•˜๋ฉฐ, 0์ผ๋•Œ๋Š” ๋ฐฉ์ „ํ•œ๋‹ค๊ณ  ์„ค์ •ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ๋Š” ์œ„์˜ ์ œ์•ฝ์กฐ๊ฑด๋“ค ๋งŒ์กฑํ•˜๋ฉด์„œ ์ถฉ์ „์†Œ์˜ ์ด์ต์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ „๋ ฅ ๊ตฌ๋งคยทํŒ๋งค๋Ÿ‰๊ณผ ์—ฐ๊ฒฐ๋œ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ์ถฉยท๋ฐฉ์ „๋Ÿ‰์„ ๋„์ถœํ•˜๊ณ ์ž ํ•œ๋‹ค.

3.3 Chance constrained programming for PV and EV load uncertainties

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ (8)๊ณผ (11)์˜ ์ œ์•ฝ์กฐ๊ฑด ๋งŒ์กฑ์„ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์„ ์„ค๊ณ„ํ•œ๋‹ค.

(20)
$inf_{\mathbb{P}\in{P}_{N^{{PV}}}}\mathbb{P}\left[P_{t}^{{PV},\:{EV}}+ P_{t}^{{PV},\:{ch}}\le\widetilde{P_{t}^{{PV}}}\right]\ge 1-\alpha$
(21)
$inf_{\mathbb{P}\in{P}_{N^{{EV}}}}\mathbb{P}\left[P_{t}^{{EV},\:{r}}- P_{t-1}^{{EV},\:{r}}+ P_{t}^{{sell}}\le\widetilde{P_{t}^{{EV}}}\right]\ge 1-\alpha$

์œ„ 2๊ฐœ์˜ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์€ ๋ถˆํ™•์‹คํ•œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์˜ (8)๊ณผ (11)์˜ ์ „๋ ฅ ์šด์˜์— ๋Œ€ํ•œ ์ œ์•ฝ์กฐ๊ฑด๋“ค์„ ($1-\alpha$) ํ™•๋ฅ  ๋‚ด๋กœ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์„ค๊ณ„ํ•˜์˜€๋‹ค.

3.4 Reformulation of objective function and chance constrained programming

์ œ์•ˆํ•œ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ํ•จ์ˆ˜ ๋‚ด $J_{2}$์— ๋Œ€ํ•œ ์ˆ˜์‹์€ ํ™•๋ฅ ๋ถ„ํฌ ๊ธฐ๋ฐ˜์˜ ๋ฌดํ•œ ์ฐจ์›์˜ ํ˜•ํƒœ๋กœ ์ •์˜๋˜์–ด ์žˆ๋‹ค. ์ด๋ฒˆ ์žฅ์—์„œ๋Š” ํ•ด๋‹น ์ˆ˜์‹์„ ์œ ํ•œ ์ฐจ์›์˜ ๋ณผ๋ก ๋ฌธ์ œ๋กœ ์žฌ์„ค๊ณ„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ์•ˆํ•œ ์žฌ์„ค๊ณ„ ๋ฐฉ๋ฒ•์€ [9]์˜ Proposition 1์˜ ์Œ๋Œ€์„ฑ ์ด๋ก ์„ ํ™œ์šฉํ•˜์˜€๋‹ค. [9]์˜ Proposition 1์˜ ๋‚ด์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

Proposition 1: ์ž„์˜์˜ ๋ฒกํ„ฐ $\widetilde{\xi}\in\mathbb{R^{n}}$๊ฐ€ ๋‹ซํ˜€ ์žˆ๊ณ  ๋ณผ๋กํ•œ ์ง‘ํ•ฉ $\Xi\subset{EQ}\mathbb{R^{n}}$ ์œ„์— ์ •์˜ ๋˜์–ด ์žˆ๊ณ , Wasserstein ๋ชจํ˜ธ์„ฑ ์ง‘ํ•ฉ ${P}_{N}$ ์ด ํ‘œ๋ณธ ์ง‘ํ•ฉ $\left\{\hat{\xi_{1}},\: \hat{\xi_{2}},\: \ldots ,\: \hat{\xi_{{N}}}\right\}$์œผ๋กœ๋ถ€ํ„ฐ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ๋งŒ์•ฝ ๋ชฉ์ ํ•จ์ˆ˜ $l(\widetilde{\xi})$ ๊ฐ€ ์ƒ๋ฐ˜ ์—ฐ์†์ด๋ผ๋ฉด ์ตœ์•…์˜ ๊ฒฝ์šฐ ๊ธฐ๋Œ“๊ฐ’ ${sup}_{\mathbb{P}\in{P}_{N^{{buy}}}}\mathbb{E^{\mathbb{P}}}$ ์€ ๋‹ค์Œ๊ณผ ๋™์น˜์ด๋‹ค.

(22)
$\begin{cases} inf_{\lambda\ge 0,\: s_{m}\in\vec{R}}\lambda\epsilon +\dfrac{1}{{N}}\sum_{{m}=1}^{{N}}{s}_{{m}}\\ {s}.{t}. {sup}_{\widetilde{\xi}\in\Xi}(l(\widetilde{\xi})-\lambda โˆฅ\widetilde{\xi}-\hat{\xi}โˆฅ_{1})\le s_{m} \end{cases}$

๋˜ํ•œ, $l(\widetilde{\xi})$ ๊ฐ€ ๋ณผ๋ก ํ•จ์ˆ˜๋ผ๋ฉด, ๊ณ ์ •๋œ $\lambda$ ์— ๋Œ€ํ•ด ์‹ (22)์˜ ์ƒํ•œ์€ ์˜ค์ง ๊ผญ์ง“์ $\xi$, $\overline{\xi}$๋˜๋Š” $\hat{\xi_{m}}$ ์—์„œ๋งŒ ์–ป์–ด์ง„๋‹ค. ์ฐธ๊ณ ํ•œ ์Œ๋Œ€์„ฑ ์ด๋ก ์„ ํ™œ์šฉํ•œ ์žฌ์„ค๊ณ„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ด๋ฃจ์–ด์ง„๋‹ค. ๋งค $t$์‹œ๊ฐ„ ํ๊ตฌ๊ฐ„ $\left[ \underline{\pi_t^{\text{buy}}}, \overline{\pi_t^{\text{buy}}} \right]$๋‚ด ๋žœ๋ค ์ „๋ ฅ ๊ตฌ๋งค๊ฐ€๊ฒฉ $\widetilde{\pi_{t}^{{buy}}}$์˜ $N^{{buy}}$๊ฐœ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ $\left\{\hat{\pi_{t,\: 1}^{{buy}}},\: \hat{\pi_{t,\: 2}^{{buy}}},\: ...,\: \hat{\pi_{t,\: N^{{buy}}}^{{buy}}}\right\}$์ด ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€์„ ๋•Œ, ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ํ™œ์šฉํ•œ ์ตœ์•…์˜ ๊ฒฝ์šฐ๋ฅผ ๊ณ ๋ คํ•œ $J_{2}$์— ๋Œ€ํ•œ Wasserstein metric ๊ธฐ๋ฐ˜์˜ ์žฌ์„ค๊ณ„๋Š” ๋‹ค์Œ๊ณผ $J_{1}^{'}$์œผ๋กœ ์„ค๊ณ„๋œ๋‹ค.

(23)
$J_{1}^{'}= inf_{\lambda_{t}^{{buy}}s_{t,\: m}^{{buy}}\in\vec{R}}\sum_{t=1}^{T}\left(\lambda_{t}^{{buy}}\epsilon_{t}^{{buy}}+\dfrac{1}{N^{{buy}}}\sum_{t=1}^{T}s_{k,\: m}^{{buy}}\right)$
(24)
${s}.{t}. \underline{\pi_{t}^{{buy}}}P_{t}^{{buy}}\Delta t+\lambda_{t}^{{buy}}\left(\underline{\pi_{t}^{{buy}}}-\hat{\pi_{t}^{{buy}}}\right)\le s_{t,\: m}^{{buy}},\: \\ \overline{\pi_{t}^{{buy}}}P_{t}^{{buy}}\Delta t-\lambda_{t}^{{buy}}\left(\overline{\pi_{t}^{{buy}}}-\hat{\pi_{t}^{{buy}}}\right)\le s_{t,\: m}^{{buy}},\: \\ \hat{\pi_{t,\: m}^{{buy}}}P_{t}^{{buy}}\Delta t\le s_{t,\: m}^{{buy}}$

์ด๋•Œ, $\underline{\pi_{t}^{{buy}}}$์™€ $\overline{\pi_{t}^{{buy}}}$๋Š” ํ๊ตฌ๊ฐ„ ๋‚ด $t$์‹œ๊ฐ„๋Œ€์˜ ์ „๋ ฅ ๊ตฌ๋งค๋Ÿ‰์˜ ์ตœ์†Œ ๋ฐ ์ตœ๋Œ€๊ฐ’์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, $\epsilon_{t}^{{buy}}$๋Š” $t$์‹œ๊ฐ„๋Œ€ ์—์„œ์˜ ์ „๋ ฅ ๊ตฌ๋งค๋Ÿ‰ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ Wasserstein distance๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, $\Delta t$๋Š” ๋‹จ์œ„์‹œ๊ฐ„์„ ๋‚˜ํƒ€๋‚ธ๋‹ค ($s_{t,\: m}$์€ $t$์‹œ๊ฐ„๋Œ€์˜ $m$๋ฒˆ์งธ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์žฌ์„ค๊ณ„ ๋ณด์กฐ๋ณ€์ˆ˜์ด๋‹ค.).

์œ„ (23)๊ณผ (24)๋กœ์˜ ์žฌ์„ค๊ณ„๋Š” ๊ธฐ์กด $J_{1}$์„ ๋‹คํ•ญ์‹์˜ ๋ณผ๋กํ•œ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜์‹œ์ผœ ์—ฐ์‚ฐ ํšจ์œจ์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์œ„ ์†Œ๊ฐœ๋œ (23)์™€ (24)์€ (5)๋ฅผ ๋Œ€์ฒดํ•˜์—ฌ ๋ฌธ์ œ์— ์ ์šฉ๋˜์–ด ์—ฐ์‚ฐ๋œ๋‹ค.

์ถ”๊ฐ€์ ์œผ๋กœ, ์ด์ „ ์žฅ์—์„œ ์†Œ๊ฐœํ•œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด ((20), (21)) ๋˜ํ•œ ๋ฌดํ•œ ์ฐจ์›์˜ ๋ฌธ์ œ๋กœ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ„ 2๊ฐœ์˜ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์„ ์ตœ์†Œํ™•๋ฅ  $1-\alpha$๋กœ ๋งŒ์กฑ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ์ตœ์†Œ๋ฒ”์œ„์˜ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ $\underline{P_{t}^{{PV}}}$๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ $\underline{P_{t}^{{EV}}}$๋ฅผ ๋„์ถœํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ฐ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ์ตœ์†Œ๋ฒ”์œ„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๋„์ถœ๋œ๋‹ค[10].

(25)
$\max_{\underline{P_{t}^{{PV}({EV})}}}\sum_{t=1}^{T}\underline{P_{t}^{{PV}({EV})}}$

${s}.{t}. \alpha N^{{PV}({EV})}v_{t}-\sum_{t=1}^{N^{{PV}({EV})}}z_{t,\: m}\ge\epsilon_{t}^{{PV}({EV})}N^{{PV}({EV})},\: \\ (-P_{t}^{{PV}({EV})}+\hat{P_{t,\: m}^{{PV}({EV})}})w_{t,\: m}-(P_{t}^{{PV}({EV}),\: \max}-\hat{P_{t,\: m}^{{PV}({EV})}})r_{t,\: m}^{\max}\\ +(P_{t}^{{PV}({EV}),\: \min}-\hat{P_{t,\: m}^{{PV}({EV})}})r_{t,\: m}^{\min}\ge v_{t}-z_{t,\: m},\: \\ \left . โˆฅ -w_{t,\: m}-r_{t,\: m}^{\max}+ r_{t,\: m}^{\min}\right .โˆฅ_{1}\le 1,\: \\ w_{t,\: m}\ge 0,\: r_{t,\: m}^{\max}\ge 0,\: r_{t,\: m}^{\min}\ge 0,\: z_{t,\: m}\ge 0.$

(25)๋Š” ์ตœ์†Œํ™•๋ฅ  $1-\alpha$์— ๋Œ€ํ•ด ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์„ ๋งŒ์กฑํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ๋Œ€์˜ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰(์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰) ์ตœ์†Ÿ๊ฐ’ $\underline {P_{t}^{{PV}({EV})}}$ ์„ ๋„์ถœํ•˜๋Š” ๋ชฉ์ ํ•จ์ˆ˜ ์ด๋‹ค. ์ด๋•Œ, $\hat{P_{t,\: m}^{{PV}({EV})}}$๋Š” $t$์‹œ๊ฐ„๋Œ€ $m$๋ฒˆ์งธ ํƒœ์–‘๊ด‘๋ฐœ์ „๋Ÿ‰(์ „๊ธฐ์ฐจ์ถฉ์ „๋Ÿ‰)์˜ ๋ถˆํ™•์‹ค์„ฑ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ๋กœ์„œ $\left[P_{t}^{{PV}({EV}),\: \min} P_{t}^{{PV}({EV}),\: \max}\right]$์˜ ๋ฒ”์œ„ ์•ˆ์— ์กด์žฌํ•œ๋‹ค. $w_{t,\: m}$, $r_{t,\: m}^{\max}$, $r_{t,\: m}^{\min}$, $z_{t,\: m}$์€ ๋ชฉ์ ํ•จ์ˆ˜ ๊ณ„์‚ฐ์„ ์œ„ํ•œ ๋ณด์กฐ๋ณ€์ˆ˜์ด๋‹ค. (25)๋ฅผ ํ†ตํ•ด ๋„์ถœ๋œ $\underline{P_{t}^{{PV}({EV})}}$๋Š” (20)๊ณผ (21)์˜ $\widetilde{P_{t}^{{PV}({EV})}}$๋ฅผ ๋Œ€์ฒดํ•˜์—ฌ ์ œ์•ฝ์กฐ๊ฑด์—์„œ ์‚ฌ์šฉ๋œ๋‹ค.

์ข…ํ•ฉ์ ์œผ๋กœ, ๊ธฐ์กด์˜ ๋ฌดํ•œ ์ฐจ์›์˜ ๋ชฉ์ ํ•จ์ˆ˜ ๋ฐ ์ œ์•ฝ์กฐ๊ฑด์ธ (5), (20), (21)์„ (23)~(25)์˜ ์œ ํ•œ ์ฐจ์›์˜ ๋ณผ๋กํ•œ ํ˜•์‹์œผ๋กœ ์žฌ์„ค๊ณ„ํ•˜์—ฌ ์—ฐ์‚ฐํ•œ๋‹ค. (23)~(25)์˜ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ์—ฐ์‚ฐํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์Œ ์žฅ์—์„œ ๋ถ„์„ํ•œ๋‹ค.

4. Simulation investigations

์ด๋ฒˆ ์žฅ์—์„œ๋Š” ๋‹จ์ผ์˜ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์™€ ํƒœ์–‘๊ด‘ ๋ฐœ์ „์žฅ์น˜๊ฐ€ ์„ค์น˜๋˜์–ด์žˆ๋Š” ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ํ™˜๊ฒฝ์„ ๋Œ€์ƒ์œผ๋กœ 15๋ถ„์˜ ์Šค์ผ€์ค„๋ง ๋‹จ์œ„์‹œ๊ฐ„์„ ์„ค์ •ํ•˜์—ฌ ์ œ์•ˆํ•œ ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„์„ ์ง„ํ–‰ํ•œ๋‹ค. ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ์‹œ๊ฐ„๋Œ€๋ณ„ ์ „๋ ฅ ๊ตฌ๋งค๊ฐ€๊ฒฉ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰, ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ๋‹ค. Wasserstein metric ์ ์šฉ์„ ์œ„ํ•œ ์‹œ๊ฐ„๋Œ€๋ณ„ ์ „๋ ฅ ๊ตฌ๋งค๊ฐ€๊ฒฉ๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ๋Š” ํฌ์•„์†ก ๋ถ„ํฌ๋ฅผ ํ†ตํ•ด ์ƒ˜ํ”Œ๋ง ํ•˜๋ฉฐ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์— ๋Œ€ํ•œ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ๋Š” ์ •๊ทœ๋ถ„ํฌ๋ฅผ ํ†ตํ•ด ์ƒ˜ํ”Œ๋งํ•œ๋‹ค. ๊ฐ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ์ƒ˜ํ”Œ์ˆ˜ ($N^{{buy}}$, $N^{{EV}}$, $N^{{PV}}$)๋Š” 10์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์ „๋ ฅ ๊ตฌ๋งค๊ฐ€๊ฒฉ, ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰, ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ๊ทธ๋ฆผ 1(a), (b), (c)์™€ ๊ฐ™์ด ์„ค์ •ํ•˜์˜€๋‹ค[11,12,13]. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•ฉ์ณ์ง„ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ์ถฉ์ „ ์ฃผ๊ธฐ $t_{p}$๋Š” 8๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ์šฉ๋Ÿ‰์€ 0.3MWh๋กœ ์„ค์ •ํ•˜๋ฉฐ, ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ์ตœ๋Œ€ ์ถฉ์ „๋Ÿ‰์€ 0.15MW๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„์€ Python์˜ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํŒจํ‚ค์ง€์ธ Gurobipy๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ถ„์„๋˜์—ˆ๋‹ค.

๊ทธ๋ฆผ 1. ์‹œ๊ฐ„๋Œ€๋ณ„ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์šด์˜ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ (a) ์ „๋ ฅ ๊ตฌ๋งค๊ฐ€๊ฒฉ, (b) ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰, (c) ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰

Fig. 1. Profiles of electricity price, aggregated electric vehicle load, photovoltaic generation output: (a) electricity price, (b) aggregated electric vehicle load, and (c) photovoltaic generation output

../../Resources/kiee/KIEE.2025.74.11.1935/fig1.png

4.1 Power operation of smart EVCS

๊ทธ๋ฆผ 2๋Š” ์‹œ๊ฐ„๋Œ€๋ณ„ ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ์ถฉยท๋ฐฉ์ „๋Ÿ‰๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ  ๊ทธ๋ฆผ 3์€ ๊ฐ ์‹œ๊ฐ„๋Œ€์˜ ์ž”์—ฌ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ $P_{t}^{{EV},\:{r}}$์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๊ทธ๋ฆผ 2์—์„œ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜๋Š” ์ „๋ ฅ ๊ตฌ๋งค๊ฐ€๊ฒฉ์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ์‹œ๊ฐ„๋Œ€[8,14], [57,61]์—์„œ๋Š” ์ถฉ์ „์„ ํ•˜๊ณ , ๊ฐ€๊ฒฉ์ด ๋†’์€ ์‹œ๊ฐ„๋Œ€[28,32], [67,73]์—์„œ๋Š” ๋ฐฉ์ „์„ ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค. ์ด๊ฒƒ์€ ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ์ „๋ ฅ ๊ตฌ๋งค ๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜์˜ ์ถฉยท๋ฐฉ์ „ ์ „๋žต์œผ๋กœ ํ•ด์„๋œ๋‹ค. ์ด์™ธ์—๋„, (๊ทธ๋ฆผ 3์—์„ ) ์ž”์—ฌ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ $P_{t}^{{EV},\:{r}}$๋Š” ์ •ํ•ด์ง„ ์ฃผ๊ธฐ ($t_{p}$=8) ์— ๋งž์ถฐ 0์œผ๋กœ ์ˆ˜๋ ดํ•˜๋Š” ํ˜„์ƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ •ํ•ด์ง„ ์ฃผ๊ธฐ์— ๋งž์ถฐ 0์œผ๋กœ ์ˆ˜๋ ดํ•จ์œผ๋กœ์จ, ์ „๋ ฅ ๊ตฌ๋งค๋น„์šฉ์„ ์ตœ์†Œํ™” ํ•˜๊ธฐ ์œ„ํ•ด ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์„ ๋‹ค์Œ ์‹œ๊ฐ„๋Œ€์— ์ง€์†์ ์œผ๋กœ ์ด์›” ์‹œํ‚ค์ง€ ์•Š์œผ๋ฉด์„œ ์ •ํ•ด์ง„ ์ถฉ์ „๋Ÿ‰์„ ๋งŒ์กฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 2. ์‹œ๊ฐ„๋Œ€ ๋ณ„ ์ „๋ ฅ ๊ตฌ๋งค ๊ฐ€๊ฒฉ์— ๋”ฐ๋ฅธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ESS ์ถฉยท๋ฐฉ์ „ ์ „๋ ฅ๋Ÿ‰

Fig. 2. Charging and discharging pattern of electric vehicle charging station energy storage system in terms of the electricity price

../../Resources/kiee/KIEE.2025.74.11.1935/fig2.png

๊ทธ๋ฆผ 3. ์‹œ๊ฐ„๋Œ€ ๋ณ„ ์ž”์—ฌ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰

Fig. 3. Profiles of the remaining aggregated electric vehicle load

../../Resources/kiee/KIEE.2025.74.11.1935/fig3.png

๊ทธ๋ฆผ 4๋Š” 4๊ฐ€์ง€ $t_{p}$ [2,4,6,8]์— ๋”ฐ๋ฅธ ์ถฉ์ „์†Œ์˜ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์šด์˜ ๋น„์œจ ๋ฐ ์ˆ˜์ต์„ฑ ๋น„๊ต๋ฅผ ๋‚˜ํƒ€๋‚ธ ๊ฒฐ๊ณผ์ด๋‹ค. ์ด๋•Œ, ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์šด์˜ ๋น„์œจ์€ ๋ฐœ์ „๋œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์ค‘ ์ „๊ธฐ์ฐจ ์ถฉ์ „์— ์‚ฌ์šฉํ•˜๋Š” ๋น„์œจ์ด๋‹ค (์ „๊ธฐ์ฐจ ์ถฉ์ „์— ์‚ฌ์šฉ๋˜์ง€ ์•Š์€ ๋ฐœ์ „๋Ÿ‰์€ ๋ชจ๋‘ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜ ์ถฉ์ „์— ์‚ฌ์šฉ). ๊ทธ๋ฆผ 4์˜ ์ฃผํ™ฉ์ƒ‰ ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„๋Š” ์ด ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์ค‘ ์ „๊ธฐ์ฐจ ์ถฉ์ „์— ์‚ฌ์šฉํ•˜๋Š” ๋น„์œจ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, $t_{p}$๊ฐ€ ์ œ์ผ ์ž‘์€ 2์ผ ๋•Œ ๊ทธ ๋น„์œจ์ด ์ œ์ผ ๋†’์€ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์€ $t_{p}$๊ฐ€ ์ œ์ผ ์ž‘์€ ๊ฒฝ์šฐ์—์„œ๋Š” ๋ณด๋‹ค ๋” ๋นˆ๋ฒˆํ•˜๊ฒŒ ์ž”์—ฌ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์„ 0์œผ๋กœ ์ˆ˜๋ ดํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰์„ ์ „๊ธฐ์ฐจ ์ถฉ์ „์— ๋” ๋งŽ์€ ๋น„์œจ์„ ์‚ฌ์šฉํ•œ๋‹ค๊ณ  ํ•ด์„๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฆผ ๋‚ด ํšŒ์ƒ‰ ๋ง‰๋Œ€๊ทธ๋ž˜ํ”„๋Š” ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ์˜ ์ˆ˜์ต์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, $t_{p}$=8 ์ธ ๊ฒฝ์šฐ์—์„œ์˜ ์ˆ˜์ต์„ฑ์„ 1๋กœ ๊ธฐ์ค€์œผ๋กœ ์ •๊ทœํ™” ํ•˜์—ฌ ๋‹ค๋ฅธ $t_{p}$์—์„œ์˜ ์ˆ˜์ต์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. $t_{p}$๊ฐ€ ํด์ˆ˜๋ก ์ž”์—ฌ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ์ถฉ์ „์†Œ์˜ ์ „๋ ฅ ์šด์˜ ์œ ์—ฐ์„ฑ์ด ์ฆ๊ฐ€ํ•˜์—ฌ ์ˆ˜์ต์„ฑ ๋˜ํ•œ ํ•จ๊ป˜ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. $t_{p}$์˜ ๊ฐ’์„ ํฌ๊ฒŒ ์„ค์ •ํ•˜๋ฉด ์ถฉ์ „์†Œ ์ž…์žฅ์—์„œ ์ถฉ์ „๋Ÿ‰ ์œ ์—ฐ์„ฑ์ด ์ปค์ ธ ์ˆ˜์ต์„ฑ์ด ๋†’์•„์งˆ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „๊ธฐ์ฐจ ๊ณ ๊ฐ ์ž…์žฅ์—์„œ๋Š” ์ œ๊ณต๋ฐ›์•„์•ผ ํ•  ์ถฉ์ „๋Ÿ‰์ด ์ง€๋‚˜์น˜๊ฒŒ ๋’ค๋กœ ์ง€์—ฐ๋  ์ˆ˜ ์žˆ์–ด ๊ณ ๊ฐ ๋งŒ์กฑ๋„ ์ €ํ•˜๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์šด์˜ ํšจ์œจ์„ฑ๊ณผ ๊ณ ๊ฐ ํŽธ์˜์„ฑ ๊ฐ„์˜ ๊ท ํ˜•์„ ๊ณ ๋ คํ•˜์—ฌ $t_{p}$๋ฅผ ์ตœ๋Œ€ 8๋กœ ์„ค์ •ํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, $t_{p}$๋ฅผ [16,24,48,96]์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€์„ ๋•Œ, $t_{p}$๊ฐ€ 8์ผ ๋•Œ์˜ ์ˆ˜์ต์„ฑ๋ณด๋‹ค ๊ฐ๊ฐ ์•ฝ 3.99%, 8.59%, 13.51%, 13.75% ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ, $t_{p}$๊ฐ€ 16 ์ด์ƒ์ธ ๊ฒฝ์šฐ ์ „๊ธฐ์ฐจ ๊ณ ๊ฐ์˜ ์ถฉ์ „ ์ง€์—ฐ๊ธฐ ๊ณผ๋„ํ•ด ์‹ค์ œ ์„œ๋น„์Šค ํ™˜๊ฒฝ์—์„œ๋Š” ํ˜„์‹ค์„ฑ์ด ๋–จ์–ด์งˆ ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜์—ฌ, ์ด์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ๊ทธ๋ฆผ 4์˜ ๋ถ„์„์—์„œ ์ƒ๋žตํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 4. $t_{p}$์— ๋”ฐ๋ฅธ ์ถฉ์ „์†Œ์˜ ์ˆ˜์ต์„ฑ ๋ฐ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ์šด์˜ ๋น„์œจ

Fig. 4. Performance comparison of the charging station profitability and the photovoltaic power operation in terms of $t_{p}$

../../Resources/kiee/KIEE.2025.74.11.1935/fig4.png

4.2 Analysis of EVCS operation under uncertainty environments

๊ทธ๋ฆผ 5(a)์™€ (b)๋Š” ๊ฐ๊ฐ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์˜ ์ตœ์†Œํ™•๋ฅ  $1-\alpha$์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋Š” ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์˜ ์ตœ์†Œ๊ฐ’์˜ ๋ฒ”์œ„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. 2๊ฐœ์˜ ๊ทธ๋ฆผ์„ ํ†ตํ•ด $\alpha$๊ฐ€ ์ปค์งˆ์ˆ˜๋ก 2๊ฐœ์˜ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ์ตœ์†Œ๊ฐ’์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์€ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์ด ์ตœ์†Œํ™•๋ฅ  $1-\alpha$๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๊ฒฐ๊ณผ๋กœ์„œ, $\alpha$๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ž‘์•„์ง„ $1-\alpha$์˜ ํ™•๋ฅ ์— ๋Œ€ํ•˜์—ฌ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ตœ์†Œ๊ฐ’์„ ๋ฒ”์œ„๋ฅผ ๋†’๊ฒŒ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์ด๋ผ๊ณ  ํ•ด์„๋œ๋‹ค. ์ฆ‰, $\alpha$์— ๋”ฐ๋ผ ํ™˜๊ฒฝ์— ์ ์šฉ๋˜๋Š” ๋‹ค์–‘ํ•œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ ํŒจํ„ด์€ ์ถฉ์ „์†Œ์˜ ์ด์ต์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆผ 6์€ $\alpha$์— ๋”ฐ๋ฅธ ์ถฉ์ „์†Œ ์ด์ต์„ ๋น„๊ต๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด 4๊ฐœ์˜ $\alpha$์— ๋Œ€ํ•˜์—ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ, $\alpha$=0.2์ผ ๋•Œ์˜ ์ด์ต์„ 1๋กœ ๊ธฐ์ค€์œผ๋กœ ํ•˜์—ฌ ๊ฒฐ๊ณผ๋ฅผ ์ •๊ทœํ™”ํ•˜์˜€๋‹ค. $\alpha$๊ฐ’์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋” ๋งŽ์€ ์—๋„ˆ์ง€๋ฅผ ๋ณด์กฐ ๋ฐ›์œผ๋ฉฐ ์—๋„ˆ์ง€ ํŒ๋งค๋Ÿ‰์„ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ์–ด ์ˆ˜์ต์„ฑ ๋˜ํ•œ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด์— $\alpha$๊ฐ€ ์ œ์ผ ์ž‘์€ 0.2์ผ ๋•Œ๋Š” ์ œ์ผ ์ ์€ ํƒœ์–‘๊ด‘ ์—๋„ˆ์ง€ ๋ฐœ์ „๋Ÿ‰ ๋ณด์กฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ ์€ ์—๋„ˆ์ง€๋ฅผ ํŒ๋งคํ•˜๊ฒŒ ๋˜์–ด ์ˆ˜์ต์„ฑ ๋˜ํ•œ ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. $\alpha$๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ˆ˜์ต์„ฑ์ด ํ–ฅ์ƒ๋˜๋Š” ๊ฒฝํ–ฅ์„ ํ™•์ธํ•˜์˜€์ง€๋งŒ, $\alpha$๊ฐ€ 0.8์„ ์ดˆ๊ณผํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š” ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์˜ ๋งŒ์กฑํ™•๋ฅ  $(1-\alpha)$์ด ์ง€๋‚˜์น˜๊ฒŒ ๋‚ฎ์•„ ์‹ค์ œ ์šด์˜ ์ƒํ™ฉ์—์„œ ํ˜„์‹ค์„ฑ์ด ๋–จ์–ด์ง€๋Š” ๊ทน๋‹จ์ ์ธ ์‹œ๋‚˜๋ฆฌ์˜ค๋ผ๊ณ  ํŒ๋‹จ๋˜์–ด ๊ทธ๋ฆผ 6์˜ ๋ถ„์„์— ์ถ”๊ฐ€ํ•˜์ง€ ์•Š์•˜๋‹ค. ์ด์— ๋Œ€ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” $\alpha$๊ฐ€ 0.8 ์ดํ•˜๋กœ ์ œํ•œํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 7์€ 4๊ฐ€์ง€ $t_{p}$ [2,4,6,8] ํ™˜๊ฒฝ์—์„œ ์ „๋ ฅ ๊ตฌ๋งค๊ฐ€๊ฒฉ์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ ์š”์†Œ์— ๋Œ€ํ•œ ์ถฉ์ „์†Œ์˜ ์ˆ˜์ต์„ฑ์„ ๊ธฐ์กด์—ฐ๊ตฌ๋“ค๊ณผ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Wasserstein metric ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋งค ์‹œ๊ฐ„๋Œ€๋ณ„ ์ „๋ ฅ ๊ตฌ๋งค ๊ฐ€๊ฒฉ์˜ ๋ถˆํ™•์‹ค์„ฑ ๊ณ ๋ ค ์˜์—ญ $\epsilon_{t}^{{buy}}$ ์„ ์ •์˜ํ•˜์˜€๋‹ค. ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ์˜์—ญ์„ ์ •์˜ํ•˜์ง€ ์•Š์€ ๊ธฐ์กด ์—ฐ๊ตฌ 2๊ฐœ (robust optimization (RO), stochastic optimization (SO)) ์™€ ๋น„๊ต๋ถ„์„์„ ํ•˜์˜€๋‹ค. Robust optimization์€ ์ฃผ์–ด์ง„ ๋ถˆํ™•์‹ค์„ฑ ํ™˜๊ฒฝ์—์„œ ์ตœ์•…์˜ ๊ฒฝ์šฐ๋ฅผ ๊ณ ๋ คํ•˜๋Š” ๋”์šฑ ๋ณด์ˆ˜์ ์ธ ๋ฐฉ๋ฒ•๋ก ์ด๋ฉฐ, Stochastic optimization์€ ์ฃผ์–ด์ง„ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ํ™•๋ฅ ๋ถ„ํฌ ํ™˜๊ฒฝ์„ ๋ชจ๋‘ ์ •ํ™•ํžˆ ์•Œ๊ณ ์žˆ๋‹ค๋Š” ์ด์ƒ์ ์ธ ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๋„์ถœ๋œ ๊ฐ $t_{p}$๋ณ„ ๊ฒฐ๊ณผ๋ฅผ 1๋กœ ์ •๊ทœํ™”ํ•˜์—ฌ 2๊ฐœ์˜ ๊ธฐ์กด์—ฐ๊ตฌ๋“ค๊ณผ ๋น„๊ต๋ถ„์„ ํ•˜์˜€๋‹ค. ๋ชจ๋“  $t_{p}$ํ™˜๊ฒฝ์—์„œ SO์—์„œ์˜ ์ˆ˜์ต์„ฑ์ด ์ œ์ผ ๋†’๊ณ , RO์˜ ์ˆ˜์ต์„ฑ์ด ๋‚ฎ์€ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. SO์—์„œ๋Š” ๋ชจ๋“  ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ํ™•๋ฅ ๋ถ„ํฌ ์ •๋ณด๋ฅผ ์ •ํ™•ํžˆ ์•Œ๊ณ  ์žˆ๋‹ค๋Š” ์ด์ƒ์ ์ธ ํ™˜๊ฒฝ์œผ๋กœ์„œ, ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•œ ์ด์ƒ์ ์ธ ์ตœ์  ์ถฉ์ „์†Œ ์šด์˜์„ ๋„์ถœํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ RO ์—์„œ๋Š” ์ƒ˜ํ”Œ๋ง๋œ ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ ์ตœ์•…์˜ ๊ฒฝ์šฐ๋ฅผ ๊ณ ๋ คํ•œ ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ์„œ ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•ด ๋”์šฑ ๋ณด์ˆ˜์ ์ธ ์ถฉ์ „์†Œ ์šด์˜์„ ๋„์ถœํ•˜๊ฒŒ ๋œ๋‹ค.

๊ทธ๋ฆผ 8(a)์™€ (b)๋Š” ๊ฐ๊ฐ ์ „๋ ฅ๊ตฌ๋งค ๊ฐ€๊ฒฉ ์ƒ˜ํ”Œ๋ง ๊ฐœ์ˆ˜ [5,10,20,30] ์— ๋”ฐ๋ฅธ ์ˆ˜์ต์„ฑ๊ณผ ์—ฐ์‚ฐ์‹œ๊ฐ„์„ ์œ„ 2๊ฐ€์ง€์˜ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 8(a) ์—์„œ๋Š” ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๋‚˜์˜จ ๊ฒฐ๊ณผ๋ฅผ 1์„ ๊ธฐ์ค€์œผ๋กœ ์ •๊ทœํ™”ํ•˜์—ฌ ๋‹ค๋ฅธ 2๊ฐœ์˜ ๊ธฐ์กด์—ฐ๊ตฌ์™€ ์ˆ˜์ต์„ฑ์„ ๋น„๊ต๋ถ„์„ ํ•˜์˜€๋‹ค. ์ด๋•Œ, ์ƒ˜ํ”Œ๋ง ๊ฐœ์ˆ˜๊ฐ€ ์ ์„์ˆ˜๋ก ์ œ์•ˆํ•œ Wasserstein metric ๊ธฐ๋ฐ˜์˜ ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ–ˆ์„ ๋•Œ์˜ ๊ฒฐ๊ณผ์™€ SO๋ฅผ ์ ์šฉํ–ˆ์„ ๋•Œ์˜ ๊ฒฐ๊ณผ์˜ ์ฐจ์ด๊ฐ€ ํฌ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธ์žˆ์œผ๋ฉฐ, ์ƒ˜ํ”Œ๋ง ๊ฐœ์ˆ˜๊ฐ€ ์ œ์ผ ์ ์€ 5๊ฐœ์ธ ๊ฒฝ์šฐ๋Š” 1.79%๊ฐ€ ์ฐจ์ด๋‚˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด์— ์ƒ˜ํ”Œ๋ง ๊ฐœ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฐ๊ณผ์™€ SO์—์„œ์˜ ๊ฒฐ๊ณผ ์ฐจ์ด๊ฐ€ ์ž‘์•„์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, 30์ผ๋•Œ๋Š” 1.58%์˜ ์ฐจ์ด๊ฐ€ ๋‚˜๋Š”๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. (์ƒ˜ํ”Œ๋ง ๊ฐœ์ˆ˜๊ฐ€ 10๊ณผ 20์ผ๋•Œ๋Š” ๊ฐ๊ฐ 1.75% 1.71% ์ฐจ์ด๊ฐ€ ๋‚œ๋‹ค.) ์ด๊ฒƒ์€ ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๊ฐ€ ์ ์„์ˆ˜๋ก Wasserstein metric์„ ํ†ตํ•ด ๋„์ถœํ•  ์ˆ˜ ์žˆ๋Š” ํ™•๋ฅ ๋ถ„ํฌ์˜ ์ •ํ™•์„ฑ์ด ๋’ค๋–จ์–ด์ง€๊ธฐ ๋•Œ๋ฌธ์ด๋ฉฐ, ๋ฐ˜๋ฉด์— ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜๊ฐ€ ๋งŽ์„์ˆ˜๋ก Wasserstein metric์„ ํ†ตํ•ด ๋ณด๋‹ค ์ •ํ™•ํ•œ ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ™•๋ฅ ๋ถ„ํฌ์— ๋Œ€ํ•œ ์™„๋ฒฝํ•˜๊ฒŒ ์ •ํ™•ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์•Œ๊ณ ์žˆ๋Š” SO์™€ ์„ฑ๋Šฅ ์ฐจ์ด๊ฐ€ ์ ์–ด์ง„๋‹ค. ๊ทธ๋ฆผ 8(b)๋ฅผ ํ†ตํ•ด์„  ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋‹ค๋ฅธ 2๊ฐœ์˜ ๋น„๊ต์—ฐ๊ตฌ๋ณด๋‹ค ๋” ๋งŽ์€ ์—ฐ์‚ฐ์‹œ๊ฐ„์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์€ ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ Wasserstein ๊ฑฐ๋ฆฌ ์—ฐ์‚ฐ ๋ฐ ๋ชจํ˜ธ ์ง‘ํ•ฉ ์ƒ์„ฑ์— ์ถ”๊ฐ€์ ์ธ ์—ฐ์‚ฐ์‹œ๊ฐ„์ด ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ์˜ 24์‹œ๊ฐ„ ์ถฉ์ „์†Œ ์Šค์ผ€์ค„๋ง ํ™˜๊ฒฝ์„ ๊ณ ๋ คํ•˜์˜€์„ ๋•Œ, ํ˜„์žฌ ๋„์ถœ๋˜๋Š” ์ œ์•ˆ์—ฐ๊ตฌ์˜ ์—ฐ์‚ฐ์‹œ๊ฐ„์€ ํฐ ๋ฌธ์ œ๊ฐ€ ์—†์„ ๊ฒƒ์ด๋ผ๊ณ  ์˜ˆ์ƒ๋œ๋‹ค.

๊ทธ๋ฆผ 5. $\alpha$์— ๋”ฐ๋ฅธ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ๋ฐ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰ ์ตœ์†Œ๊ฐ’ ๋ณ€ํ™” (a) ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰, (b) ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰

Fig. 5. Distributionally robust bounds of the photovoltaic generation and the electric vehicle load in terms of $\alpha$: (a) Photovoltaic generation and (b) electric vehicle load

../../Resources/kiee/KIEE.2025.74.11.1935/fig5.png

๊ทธ๋ฆผ 6. $\alpha$์— ๋”ฐ๋ฅธ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰ ๋ฐ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์— ๋Œ€ํ•œ ์ถฉ์ „์†Œ ์ˆ˜์ต์„ฑ ๋ณ€ํ™”

Fig. 6. Profitability comparison of the electric vehicle charging station in terms of $\alpha$

../../Resources/kiee/KIEE.2025.74.11.1935/fig6.png

๊ทธ๋ฆผ 7. $t_{p}$์— ๋”ฐ๋ฅธ ์ œ์•ˆ์—ฐ๊ตฌ ๋ฐ ๊ธฐ์กด์—ฐ๊ตฌ 2๊ฐœ์˜ ์ˆ˜์ต์„ฑ ๋น„๊ต

Fig. 7. Profitability comparison between the proposed study and the conventional methods in terms of $t_{p}$

../../Resources/kiee/KIEE.2025.74.11.1935/fig7.png

๊ทธ๋ฆผ 8. ์ „๋ ฅ ๊ตฌ๋งค ๊ฐ€๊ฒฉ ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜์— ๋”ฐ๋ฅธ ์ œ์•ˆ์—ฐ๊ตฌ ๋ฐ ๊ธฐ์กด์—ฐ๊ตฌ 2๊ฐœ์˜ ์ˆ˜์ต์„ฑ ๋ฐ ์—ฐ์‚ฐ์‹œ๊ฐ„ ๋น„๊ต (a) ์ˆ˜์ต์„ฑ, (b) ์—ฐ์‚ฐ์‹œ๊ฐ„

Fig. 8. Comparison of the profitability and the computation time between the proposed study and the conventional methods in terms of the number of price samples: (a) Profitability, and (b) computation time

../../Resources/kiee/KIEE.2025.74.11.1935/fig8.png

5. Conclusion

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์—๋„ˆ์ง€ ์šด์˜ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋Œ€ํ‘œ์ ์ธ ๋ถˆํ™•์‹ค์„ฑ ์š”์†Œ์ธ ํƒœ์–‘๊ด‘ ๋ฐœ์ „๋Ÿ‰๊ณผ ์ „๊ธฐ์ฐจ ์ถฉ์ „๋Ÿ‰์„ ๊ณ ๋ คํ•œ ์ตœ์  ์ถฉ์ „์†Œ ์—๋„ˆ์ง€ ์šด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ์—ฐ๊ตฌ๊ธฐ๋ฒ•๋“ค์— ๋Œ€ํ•œ ํ•œ๊ณ„์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ Wasserstein metric์„ ํ™œ์šฉํ•œ ๋ถ„ํฌ ๊ฐ•๊ฑด ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ฐ ์ด๋ฅผ ํ™œ์šฉํ•œ ๊ธฐํšŒ์ œ์•ฝ์กฐ๊ฑด์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ธฐ์กด์˜ ๋ฌดํ•œ ์ฐจ์›์˜ ๋ชฉ์ ํ•จ์ˆ˜ ๋ฐ ์ œ์•ฝ์กฐ๊ฑด์€ ์œ ํ•œ ์ฐจ์›์˜ ๋ณผ๋ก ํ˜•ํƒœ๋กœ ์žฌ์„ค๊ณ„ํ•˜์—ฌ ์—ฐ์‚ฐ ๋ฐ ๋ถ„์„ํ•˜์˜€๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ถ„์„์„ ํ†ตํ•ด ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋‹ค์–‘ํ•œ ์ „๋ ฅ ๊ตฌ๋งค ๊ฐ€๊ฒฉ ์‹œ๊ฐ„๋Œ€, ์ถฉ์ „ ์ฃผ๊ธฐ, ๋ถˆํ™•์‹ค์„ฑ ํ™•๋ฅ  ํ™˜๊ฒฝ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ์ถฉ์ „์†Œ ์—๋„ˆ์ง€ ์šด์˜ํŒจํ„ด ๋ฐ ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค (์ถฉ์ „ ์ฃผ๊ธฐ $t_{p}$๊ฐ€ 8๋ณด๋‹ค ํฐ ๊ฒฝ์šฐ๋Š” ์•ฝ 3.99~13.75% ์ˆ˜์ต์„ฑ์ด ํ–ฅ์ƒ๋˜์—ˆ์œผ๋ฉฐ, $\alpha$๊ฐ€ 0.8๋ณด๋‹ค ํฐ ๊ฒฝ์šฐ๋Š” ์•ฝ 18.24~21.49% ์ˆ˜์ต์„ฑ ํ–ฅ์ƒ ํ™•์ธ). ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ธฐ์กด์—ฐ๊ตฌ (SO, RO)๋“ค๊ณผ์˜ ๋น„๊ต๋ถ„์„์„ ํ†ตํ•ด ์ฃผ์–ด์ง„ ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ธฐ์กด์—ฐ๊ตฌ๋“ค์˜ ์ œํ•œ์  (ex. ์ด์ƒ์ ์ธ ํ™•๋ฅ ๋ถ„ํฌ ์ •๋ณด ๋ฐ ์ง€๋‚˜์น˜๊ฒŒ ๋ณด์ˆ˜์ ์ธ ์ƒํ™ฉ ๊ณ ๋ ค)์„ ๊ฐœ์„ ํ•œ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ํ™˜๊ฒฝ ๋‚ด ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ์ตœ์  ์ „๋ ฅ์šด์˜์„ ๋„์ถœํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ•ด๋‹น ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ์–ด์ง„ ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜ [5,10,20,30] ์— ๋”ฐ๋ฅธ ๊ธฐ์กด์—ฐ๊ตฌ๋“ค๊ณผ์˜ ์ˆ˜์น˜๋ถ„์„์„ ํ†ตํ•ด ์„ฑ๋Šฅ์˜ ์šฐ์ˆ˜์„ฑ (์ด์ƒ์ ์ธ ํ™˜๊ฒฝ์—์„œ์˜ ๊ฒฐ๊ณผ์™€ ์•ฝ 1.58~1.79%์˜ ์ˆ˜์ต์„ฑ ์ฐจ์ด)์„ ํ™•์ธํ•˜์˜€๋‹ค.

๋ฏธ๋ž˜ ์—ฐ๊ตฌ์—์„œ๋Š” ์Šค๋งˆํŠธ ์ „๊ธฐ์ฐจ ์ถฉ์ „์†Œ ์—๋„ˆ์ง€ ํ™˜๊ฒฝ์˜ ๋ถˆํ™•์‹ค์„ฑ ์š”์†Œ๊ฐ€ ์ „๋ ฅ๊ณ„ํ†ต ์šด์˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ (ex. ๋…ธ๋“œ ์ „์•• ๋ฐ ์ฃผํŒŒ์ˆ˜) ์— ๋Œ€ํ•ด ๋ถ„์„ํ•  ์˜ˆ์ •์ด๋ฉฐ, ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ถฉ์ „์†Œ์™€ ๊ณ„ํ†ต์ด ์—ฐ๊ณ„๋œ ์ตœ์  ์—๋„ˆ์ง€์‹œ์Šคํ…œ ์šด์˜์„ ์„ค๊ณ„ํ•  ๊ณ„ํš์ด๋‹ค.

Acknowledgements

๋ณธ ์—ฐ๊ตฌ๋Š” ์‚ฐ์—…ํ†ต์ƒ์ž์›๋ถ€ ์†Œ์žฌ๋ถ€ํ’ˆ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—… ์—ฐ๊ตฌ๋น„ (๊ณผ์ œ๋ฒˆํ˜ธ: RS-2024-00468436) ์ง€์›์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Œ.

References

1 
Y. Li, S. He, Y. Li, L. Ge, S. Lou and Z. Zeng, โ€œProbabilistic Charging Power Forecast of EVCS: Reinforcement Learning Assisted Deep Learning Approach,โ€ in IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 344-357, Jan. 2023.DOI:10.1109/TIV.2022.3168577DOI
2 
H. T. Nguyen and D. -H. Choi, โ€œDistributionally Robust Model Predictive Control for Smart Electric Vehicle Charging Station With V2G/V2V Capability,โ€ in IEEE Transactions on Smart Grid, vol. 14, no. 6, pp. 4621-4633, Nov. 2023.DOI:10.1109/TSG.2023.3263470DOI
3 
M. Kang, D. Kim, B. Lee and Y. Lee, โ€œOptimization of Electric Bus Charging and Discharging Schedules with Vehicle-to-Grid Technology,โ€ in The Transactions of the Korean Institute of Electrical Engineers, vol. 74, no. 5, pp. 761-774, 2025.DOI:110.5370/KIEE.2025.74.5.761DOI
4 
S. S. Barhagh, B. Mohammadi-Ivatloo, M. Abapour and M. Shafie-Khah, โ€œOptimal Sizing and Siting of Electric Vehicle Charging Stations in Distribution Networks With Robust Optimizing Model,โ€ in IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 5, pp. 4314-4325, May 2024.DOI:10.1109/TITS.2023.3334470DOI
5 
U. Qureshi, A. Ghosh and B. K. Panigrahi, โ€œMultiobjective Pareto-Optimal Intelligent Electric Vehicle Charging Schedule in a Commercial Charging Station: A Stochastic Convex Optimization Approach,โ€ in IEEE Transactions on Industrial Informatics, vol. 20, no. 11, pp. 12620-12632, Nov. 2024. DOI:10.1109/TII.2024.3423373DOI
6 
H. T. Nguyen and D. -H. Choi, โ€œDecentralized Distributionally Robust Coordination Between Distribution System and Charging Station Operators in Unbalanced Distribution Systems,โ€ in IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 2164-2177, May 2023. DOI:10.1109/TSG.2022.3210232DOI
7 
C. Han, J. Choi and G. Jang, โ€œDistributionally Robust Optimization-Based Stochastic Operation Strategy of MVDC System in Distribution Networks,โ€ in The Transactions of the Korean Institute of Electrical Engineers, vol. 73, no. 8, pp. 1291-1297, 2024.DOI:10.5370/KIEE.2024.73.8.1291DOI
8 
P. Mohajerin Esfahani and D. Kuhn, โ€œData-Driven Distributionally Robust Optimization using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations,โ€ in Mathmatical Programming, vol. 171, no. 1, pp. 115โ€“166, Sep. 2018.DOI:10.1007/s10107-017-1172-1DOI
9 
R. Gao and A. Kleywegt, โ€œDistributionally Robust Stochastic Optimization with Wasserstein Distance,โ€ in Mathematics of Operations Research, vol. 48, no. 2, pp. 603-655, May 2023.DOI:10.1109/TSG.2023.3263470DOI
10 
A. Arrigo, et. al., โ€œWasserstein Distributionally Robust Chance-Constrained Optimization for Energy and Reserve Dispatch: An Exact and Physically-Bounded Formulation,โ€ in European Journal of Operational Research, vol. 296, no. 1, pp. 304-322, Jan. 2022.DOI:10.1016/j.ejor.2021.04.015DOI
11 
A. -H. Mohsenian-Rad and A. Leon-Garcia, โ€œOptimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments,โ€ in IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 120-133, Sept. 2010.DOI
12 
E. W. Wood, et al., โ€œCalifornia Plug-In Electric Vehicle Infrastructure Projections: 2017-2025-Future Infrastructure Needs for Reaching the Stateโ€™s Zero Emission-Vehicle Deployment Goals,โ€ No. NREL/TP-5400-70893. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2018.DOI
13 
Open Data Sets. [Online]. Available:https://site.ieee.org/pes-iss/data-sets/.URL

์ €์ž์†Œ๊ฐœ

์ด๋ฏผ๊ทœ(Min-Gyu Lee)
../../Resources/kiee/KIEE.2025.74.11.1935/au1.png

He is currently in B.S. degree from Department of Electrical Engineering, Chonnam National University, Gwangju, Korea.

๋ฌธ์ฒ ์šฐ(Chulwoo Moon)
../../Resources/kiee/KIEE.2025.74.11.1935/au2.png

He received B.S. degree in Mechanical Engineering from Hanyang University in 2006, and his M.S. and Ph.D. degrees from the Korea Advanced Institute of Science and Technology (KAIST) in 2008 and 2018, respectively. From 2007 to 2024, he worked as a principal researcher and director at the Korea Automotive Technology Institute. He is currently an associate professor in the Department of Future Mobility at Chonnam National University, Gwangju, Korea.

์ด์ƒ์œค(Sangyoon Lee)
../../Resources/kiee/KIEE.2025.74.11.1935/au3.png

He received B.S., M.S., and Ph.D. degrees in Electronics and Electrical Engineering from Chung-Ang University, Seoul, Korea, in 2018, 2020, and 2024, respectively. He is currently an Assistant Professor in the Department of Electrical Engineering at Chonnam National University, Gwangju, Korea.