• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Y. Li, S. He, Y. Li, L. Ge, S. Lou and Z. Zeng, “Probabilistic Charging Power Forecast of EVCS: Reinforcement Learning Assisted Deep Learning Approach,” in IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 344-357, Jan. 2023.DOI:10.1109/TIV.2022.3168577DOI
2 
H. T. Nguyen and D. -H. Choi, “Distributionally Robust Model Predictive Control for Smart Electric Vehicle Charging Station With V2G/V2V Capability,” in IEEE Transactions on Smart Grid, vol. 14, no. 6, pp. 4621-4633, Nov. 2023.DOI:10.1109/TSG.2023.3263470DOI
3 
M. Kang, D. Kim, B. Lee and Y. Lee, “Optimization of Electric Bus Charging and Discharging Schedules with Vehicle-to-Grid Technology,” in The Transactions of the Korean Institute of Electrical Engineers, vol. 74, no. 5, pp. 761-774, 2025.DOI:110.5370/KIEE.2025.74.5.761DOI
4 
S. S. Barhagh, B. Mohammadi-Ivatloo, M. Abapour and M. Shafie-Khah, “Optimal Sizing and Siting of Electric Vehicle Charging Stations in Distribution Networks With Robust Optimizing Model,” in IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 5, pp. 4314-4325, May 2024.DOI:10.1109/TITS.2023.3334470DOI
5 
U. Qureshi, A. Ghosh and B. K. Panigrahi, “Multiobjective Pareto-Optimal Intelligent Electric Vehicle Charging Schedule in a Commercial Charging Station: A Stochastic Convex Optimization Approach,” in IEEE Transactions on Industrial Informatics, vol. 20, no. 11, pp. 12620-12632, Nov. 2024. DOI:10.1109/TII.2024.3423373DOI
6 
H. T. Nguyen and D. -H. Choi, “Decentralized Distributionally Robust Coordination Between Distribution System and Charging Station Operators in Unbalanced Distribution Systems,” in IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 2164-2177, May 2023. DOI:10.1109/TSG.2022.3210232DOI
7 
C. Han, J. Choi and G. Jang, “Distributionally Robust Optimization-Based Stochastic Operation Strategy of MVDC System in Distribution Networks,” in The Transactions of the Korean Institute of Electrical Engineers, vol. 73, no. 8, pp. 1291-1297, 2024.DOI:10.5370/KIEE.2024.73.8.1291DOI
8 
P. Mohajerin Esfahani and D. Kuhn, “Data-Driven Distributionally Robust Optimization using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations,” in Mathmatical Programming, vol. 171, no. 1, pp. 115–166, Sep. 2018.DOI:10.1007/s10107-017-1172-1DOI
9 
R. Gao and A. Kleywegt, “Distributionally Robust Stochastic Optimization with Wasserstein Distance,” in Mathematics of Operations Research, vol. 48, no. 2, pp. 603-655, May 2023.DOI:10.1109/TSG.2023.3263470DOI
10 
A. Arrigo, et. al., “Wasserstein Distributionally Robust Chance-Constrained Optimization for Energy and Reserve Dispatch: An Exact and Physically-Bounded Formulation,” in European Journal of Operational Research, vol. 296, no. 1, pp. 304-322, Jan. 2022.DOI:10.1016/j.ejor.2021.04.015DOI
11 
A. -H. Mohsenian-Rad and A. Leon-Garcia, “Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments,” in IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 120-133, Sept. 2010.DOI
12 
E. W. Wood, et al., “California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025-Future Infrastructure Needs for Reaching the State’s Zero Emission-Vehicle Deployment Goals,” No. NREL/TP-5400-70893. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2018.DOI
13 
Open Data Sets. [Online]. Available:https://site.ieee.org/pes-iss/data-sets/.URL