• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Korea Energy Economics Institute, 2018, World energy market insight, Vol. 15, No. 36Google Search
2 
IEA, 2018, 2017 Global Energy & CO2 Status ReportGoogle Search
3 
Natalia Alexandrovna Vorobeva, Mikhail Vladimirovich Kolesnikov, 2016, International Journal of Energy Economics and Policy, Vol. 6, No. 2Google Search
4 
Korea Energy Economics Institute, 2018, 2018 Energy Info. KoreaGoogle Search
5 
Hyun-jin Lee, Aug 2016, Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction, Journal of Korea Multimedia Society, Vol. 19, No. 8, pp. 1530-1537DOI
6 
Electric Power Journal, Aug. 2019, http://www.epj.co.kr/news/articleView.html?idxno=22846Google Search
7 
Dong-Ha Shin, Jun-Ho Park, Chang-Bok Kim, Dec 2017, Photovoltaic Generation Forecasting Using Weather Forecast and Predictive Sunshine and Radiation, Journal of Advanced Navigation Technology, Vol. 21, No. 6, pp. 643-650DOI
8 
Jin-Hwa Jeong, Young-Tae Chae, Feb 2018, Improvement for Forecasting of Photovoltaic Power Output using Real Time Weather Data based on Machine Learning, Journal of The Korean Society of Living Environmental System, Vol. 25, No. 1, pp. 119-125Google Search
9 
Tae-Ho Kim, Seong-Yeon Yoo, Kyu-Hyun Han, Hyoung- Chul Kang, Hong-Ik Yoon, 2013, A Study on Solar Radiation Model for Prediction of Solar Insolation, The Korean Society of Mechanical Engineers Conference, pp. 670-675Google Search
10 
Kwang-Deuk Kim, Dec 2013, The Development of the Short-Term Predict Model for Solar Power Generation, Journal of the Korean Solar Energy Society, Vol. 33, No. 6DOI
11 
Zhenyu Wang, Jan 2018, Hourly Solar Radiation Forecasting Using a Volterra-Least Squares Support Vector Machine Model Combined with Signal Decomposition, MIPI EnergiesDOI
12 
A. Kumler, Y. Xie, Y. Zhang, Oct 2018, A New Approach for Short-Term Solar Radiation Forecasting Using the Estimation of Cloud Fraction and Cloud Albedo. Golden, CO: National Renewable Energy Laboratory, NRELDOI
13 
Pedro Francisco, Jiménez Pérez, 2016, Data Mining Models for Short-term Solar Radiation Prediction and Forecast-based Assessment of Photovoltaic Facilities, Universidad de MálagaGoogle Search
14 
Hadja Maïmouna Diagne, Mathieu David, Philippe Lauret, John Boland, Nicolas Schmutz, Nov 2013, Review of solar irradiance forecasting methods and a proposition for small-scale insular grids, Elesvier Renewable and Sustainable Energy Reviews, Vol. 27, pp. 65-76DOI
15 
S. Al-Dahidi, O. Ayadi, M. Alrbai, J. Adeeb, Jun 2019, Ensemble Approach of optimized Artificial Neural Networks for solar photovoltaic power prediction., IEEE Access, Vol. 7, pp. 81741-81758DOI
16 
Ruijin Zhu, Mar 2019, Short-Term Photovoltaic Power Output Pre-action Based on k-Fold Cross-Validation and an Ensemble Model, MIDPI EergiesGoogle Search
17 
Alexey Natekin, Dec 2013, Gradient boosting machines, a tutorial, Frontiers in Neurorobotics, Vol. 7, No. 21DOI
18 
Jerome H. Friedman, Oct 2001, Greedy Function Approximation: A Gradient Boosting Machine, Institute of Mathematical Statistics, Vol. 29, No. 5, pp. 1189-1232Google Search
19 
National Institute of Meteorological Sciences, Aug. 2019, http://www.greenmap.go.krGoogle Search
20 
Korea Meteorological Administration, Aug. 2019, https://data.kma.go.kr/cmmn/main.doGoogle Search