KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2020-03
(Vol.69 No.3)
10.5370/KIEE.2020.69.3.460
Journal XML
XML
PDF
INFO
REF
References
1
G. Janazcek, L. Swift, 1993, Time Series Forecasting, Simulation, Simulation, Applications, Ellis Horwood
2
B. H. Ahn, H. R. Choi, H. C. LEE, 2015, Regional Long- Term Load Forecasting using SARIMA in South Korea, Journal of the Korea Academia-Industrial cooperation Society, Vol. 16, No. 12, pp. 8576-8584
3
M. Hayati, Y. Shirvany, 2007, Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region, IJECSE, Vol. 1, No. 2, pp. 121-125
4
H. S. Hwang, J. S. Oh, 2009, Time Series Sock Prices Prediction Based On Fuzzy Model, Journal of The Korean Institute of Intelligent Systems, Vol. 16, pp. 589-694
5
O. Valenzuela, I. Rojas, F. Rojas, H. Pomares, L. J. Herrera, A. Guillen, L, Marquez, M. Pasadas, 2008, Hybridization of Intelligent techniques and ARIMA models for time series prediction, Fuzzy Sets and Systems, Vol. 159, pp. 821-845
6
P. Mandal, T. Senjyu, T. Funabashi, 2006, Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market, Energy Conversion and Management, Vol. 47, No. 15-16, pp. 2128-2142
7
J. M. Mendel, 2001, Uncertain Rule-based Fuzzy Logic System: Introduction and New Directions, Prentice-Hall, Upper Saddle River, Nj
8
C. S. Ting, 2006, Stability analysis and design of Takagi-Sugeno fuzzy system, Information Science, Vol. 176, pp. 2817-2845
9
G. Mahalakshmi, S. Sridevi, S. Rajaram, 2016, A Survey on Forecasting of Time Series Data, in Proc. of 2016 International Conference on Computing Technologies and Intelligent Data Engineering, pp. 1-8
10
T. Velmurugan, T. Santhanam, 2010, Design of Multiple Model Fuzzy Predictors using Preprocessing and its Application, European Journal of Scientific Research, Vol. 46, No. 3, pp. 320-330
11
Y. K. Bang, C. H. Lee, 2011, Fuzzy Time Series Prediction using Hierarchical Clustering Algorithms, Exports Systems with Applications, Vol. 38, pp. 4312-4325
12
Y. K. Bang, C. H. Lee, 2009, Design of Multiple Model Fuzzy Predictors using Preprocessing and its Application, Trans. KIEE, Vol. 58, No. 1, pp. 178-180
13
M. Sugeno, G. T. Kang, 1988, Structure Identification of Fuzzy Model, Fuzzy Sets and Systems, Vol. 28, pp. 15-33
14
L. X. Wang, J. M. Mendel, 1992, Generating fuzzy rules from numerical data, with applications, IEEE Trans. on Systems, Man, and Cybern., Vol. 22, No. 6, pp. 1414-1427
15
D. J. Kim, C. H. Kim, 1997, Forecasting Time Series with Genetic Fuzzy Predictor Ensemble, IEEE Trans. on Fuzzy Systems, Vol. 5, pp. 523-535
16
https://datamarket.com/data/set/22pv.
17
Y. S. Joo, 2003, Fuzzy System Modeling Using Genetic Algorithm and Rough Set Theory, M. S. Thesis, Dept. of Electrical and Electronic Eng., Kangwon Univ., Korea