KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-02
(Vol.70 No.2)
10.5370/KIEE.2021.70.2.354
Journal XML
XML
PDF
INFO
REF
References
1
X. Chen, C. H. Chen, R. Lee, 2018, Fast evaluation of the high-frequency channel noise in nanoscale MOSFETs, IEEE Trans. Electron Devices, Vol. 65, No. 4, pp. 1502-1508
2
M. J. Deen, 2006, High frequency noise of modern MOSFETs: compact modeling and measurement issues, ials, IEEE Trans. Electron Devices, Vol. 53, No. 9, pp. 2062-2081
3
K. Han, 2005, Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2GHz low noise amplifier, IEEE J. Solid-State Circuits, Vol. 40, No. 3, pp. 726-734
4
K. Han, H. Shin, K. Lee, 2004, Analytical drain thermal noise current model valid for deep submicron MOSFETs, IEEE Trans. Electron Devices, Vol. 51, No. 2, pp. 261-269
5
S. Asgaran, et al, 2004, Analytical modeling of MOSFETs channel noise and noise parameters, IEEE Trans. Electron Devices, Vol. 51, No. 12, pp. 2109-2114
6
J. Jeon, Y. Kim, M. Kang, 2016, Investigation of the induced gate noise of nanoscale MOSFETs in the very frequency region, Semicond. Sci. Technol., Vol. 31, No. 6, pp. 065004
7
J. Jeon, 2008, On the characteristics and spatial dependence of channel thermal noise in nanoscale metal oxide semi- conductor field effect transistors, Jpn. J. Appl. Phys., Vol. 47, No. 4, pp. 2636-2940
8
J. Lee, 2003, Noise model of gate-leakage current in ultrathin oxide MOSFETs, IEEE Trans. Electron Devices, Vol. 50, No. 12, pp. 2499-2506
9
J. Lee, 2002, Model and analysis of gate leakage current in ultrathin nitrided oxide MOSFETs, IEEE Trans. Elec- tron Devices, Vol. 49, No. 7, pp. 1232-1242
10
A. D. Huang, Z. Zhong, W. Wu, Y. X. Guo, 2016, An artificial neural network-based electrothermal model for GaN HEMTs with dynamic trapping effects consideration, IEEE Trans. Microw. Theory Techn., Vol. 64, No. 8, pp. 2519-2528
11
X. Li, J. Gao, G. Boeek, 2006, Microwave nonlinear device modeling by using an artificial neural network, Semicond. Sci. Technol., Vol. 21, No. 7, pp. 833-840
12
J. Lee, 2003, Physics-guided neural modeling for low-dimensional thermoelectric module, IEEE Electron Device Lett., Vol. 40, No. 11, pp. 1812-1815
13
L. Zhang, M. Chan, 2017, Artificial neural network design for compact modeling of generic transistors, J. Comput. Electron., Vol. 16, No. , pp. 825-832
14
A. JarndalL, 2019, On neural network based electro- thermal modeling of GaN devices, IEEE Access, Vol. 7, pp. 94205-94214
15
Y. We, 2012, Using radial basis function networks for function approximation and classification, ISRN Appl. Math., Vol. 2012, pp. 1-34