KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-03
(Vol.70 No.3)
10.5370/KIEE.2021.70.3.515
Journal XML
XML
PDF
INFO
REF
References
1
M. Yulong, Y. Qiang, W. Siying, Z. Fuping, T. Ju, Z. Ning, 2018, A New Method for Fault Diagnosis of SF6In- sulation Equipment Based on Decomposed Components Analysis, 2018 Condition Monitoring and Diagnosis (CMD), Vol. perth, No. wa, pp. 1-4
2
S. Li, J. Li, 6 2017, Condition monitoring and diagnosis of power equipment: review and prospective, in High Voltage, Vol. 2, No. 2, pp. 82-91
3
M. Iorgulescu, R. Beloiu, M. O. Popescu, 2010, Vibration monitoring for diagnosis of electrical equipment’s faults, 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, Vol. basov, No. , pp. 493-499
4
M. Haider, A. Doegar, R. K. Verma, 2018, Fault Identifi- cation in Electrical Equipment using Thermal Image Pro- cessing, 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, Uttar Pradesh, India, pp. 853-858
5
A. Bargigia, W. Koltunowicz, A. Pigini, July 1992, Detection of parallel discharges in gas insulated substations, in IEEE Transactions on Power Delivery, Vol. 7, No. 3, pp. 1239-1249
6
Li et al. Xiuwei, 2012, Partial discharge monitoring system for PD characteristics of typical defects in GIS using UHF method, 2012 International Conference on High Voltage Engineering and Application, Vol. shanghai, pp. 625-628
7
L. Hao, P. L. Lewin, February 2010, Partial discharge source discri- mination using a support vector machine, in IEEE Tran- sactions on Dielectrics and Electrical Insulation, Vol. 17, No. 1, pp. 189-197
8
K. J. Park, G. S. Kim, S. K. Oh, W. Choi, J. T. Kim, 200812, A Study on Partial Discharge Pattern Recognition Using Neuro-Fuzzy Techniques, The Transactions of The Korean Institute of Electrical Engineers, Vol. 57, No. 12, pp. 2313-2321
9
A. Contin, A. Cavallini, G. C. Montanari, G. Pasini, F. Puletti, June 2002, Digital detection and fuzzy classification of partial discharge signals, in IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, No. 3, pp. 335-348
10
B. Raghavendra, M. Krishna Chaitanya, 2017, Comparative analysis and optimal wavelet selection of partial discharge de-noising methods in Gas-insulated Substation, 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, pp. 1-5
11
J. Li, T. Jiang, S. Grzybowski, C. Cheng, Dec 2010, Scale dependent wavelet selection for de-noising of partial discharge detection, in IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, No. 6, pp. 1705-1714
12
Q. Zhang, J. Lin, H. Song, G. Sheng, 2018, Fault Identifi- cation Based on PD Ultrasonic Signal Using RNN, DNN and CNN, 2018 Condition Monitoring and Diagnosis (CMD), Vol. perth, No. wa, pp. 1-6
13
D. H. HUBEL, T. N. WIESEL, 1962, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex., The Journal of physiology, Vol. 160, No. 1 (1962): 106-54
14
Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, , Gradient- based learning applied to document recognition, in Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324
15
F. -C. Gu, 2020, Identification of Partial Discharge Defects in Gas-Insulated Switchgears by Using a Deep Learning Method, in IEEE Access
16
H. Song, J. Dai, G. Sheng, X. Jiang, April 2018, GIS partial discharge pattern recognition via deep convolutional neural network under complex data source, in IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 25, No. 2, pp. 678-685
17
M. A. Mercioni, S. Holban, 2020, The Most Used Activation Functions: Classic Versus Current, 2020 International Conference on Development and Application Systems (DAS), Vol. suceava, No. Romania, pp. 141-145
18
N. D. Marom, L. Rokach, A. Shmilovici, 2010, Using the confusion matrix for improving ensemble classifiers, 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel, Vol. eliat, pp. 000555-000559