KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-11
(Vol.70 No.11)
10.5370/KIEE.2021.70.11.1765
Journal XML
XML
PDF
INFO
REF
References
1
G. He, R. Ciez, P. Moutis, S. Kar, J.F. Whitacre, 2020, The economic end of life of electrochemical energy storage, Appl. Energy. 273
2
X. Wu, J. Jiang, C. Wang, J. Liu, Y. Pu, A. Ragauskas, S. Li, B. Yang, 2020, Lignin-derived electrochemical energy materials and systems, Biofuels, Bioprod. Biorefining 14, pp. 650-672
3
M. Shi, J. Yuan, L. Dong, D. Zhang, A. Li, J. Zhang, 2020, Combining physicochemical model with the equivalent circuit model for performance prediction and optimization of lead-acid batteries, Electrochim. Acta. 353
4
A. Calborean, T. Murariu, C. Morari, 2019, Determination of current homogeneity on the electrodes of lead-acid batteries through electrochemical impedance spectroscopy, Electrochim. Acta. 320
5
Wikipedia contributors, 'Lead–acid battery', Wikipedia, The Free Encyclopedia, 9 July 2020, 16:33 UTC, <https://en.wikipedia. org/w/index.php?title=Lead\%E2\%80\%93acid_battery\&oldid=966859193> [accessed 24 July 2020]
6
N. Wei, J. Hu, M. Zhang, J. He, P. Ni, 2019, Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries, Electrochim. Acta. 307, pp. 495-502
7
X. Song, L. Ding, L. Wang, M. He, X. Han, 2019, Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries, Electrochim. Acta. 295, pp. 1034-1043
8
V. Toniazzo, 2005, Amersorb: A new high-performance polymeric separator for lead-acid batteries, in: J. Power Sources, 144, pp. 365-372
9
V. Toniazzo, 2006, The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries, J. Power Sources. 158, pp. 1124-1132
10
Source from meconder.com <http://www.mecondor.com/en/battery- gauntlets.php> [accessed 24 July 2020]
11
A.L. Ferreira, 2001, Battery additives: Any influence on separator behavior?, J. Power Sources. 95, pp. 255-263
12
M. Harada, S. Araki, T. Kimura, T. Shibahara, T. Iwasaki, T. Okoshi, S. Terada, M. Terada, 2018, New separator with hydrophilic surface treatment for flooded-type lead-acid battery, J. Energy Storage. 16, pp. 197-202
13
D. Xu, G. Teng, Y. Heng, Z. Chen, D. Hu, 2020, Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator, Mater. Chem. Phys. 249
14
D. Klemm, B. Heublein, H.P. Fink, A. Bohn, 2005, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chemie - Int. Ed. 44, pp. 3358-3393
15
J. Hu, Y. Liu, M. Zhang, J. He, P. Ni, 2020, A separator based on cross-linked nano-SiO2 and cellulose acetate for lithium-ion batteries, Electrochim. Acta. 334
16
Hoon Seo, 2019, Study on the effect of hydrophilic treatment on the bio-cellulose based separator for the application of next generation industrial secondary battery, Department of ICT Automotive Engineering, Graduate School Hoseo university, Korea, pp. 7-11