KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-12
(Vol.70 No.12)
10.5370/KIEE.2021.70.12.1906
Journal XML
XML
PDF
INFO
REF
References
1
M.Q. Mohammed, K.L. Chung, S. Chyi, 2020, Review of Deep Reinforcement Learning-Based Object Grasping: Techniques, Open Challenges, and Recommendations, IEEE Access, Vol. 8, pp. 178450-178481
2
M. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath, 2017, Deep Reinforcement Learning: A Brief Survey, IEEE Signal Processing Magazine, Vol. 34, No. 6, pp. 26-38
3
Y. Cho, J. Lee, K. Lee, 2020, CNN based Reinforcement Learning for Driving Behavior of Simulated Self-Driving Car, The Transactions of the Korean Institute of Electrical Engineers, Vol. 69, No. 11, pp. 1740-1749
4
A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, T. Funkhouser, 2018, Learning Synergies Between Pushing and Grasping with Self-Supervised Deep Reinforcement Learning, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4238-4245
5
Z. Sun, K. Yuan, W. Hu, C. Yang, Z. Li, 2020, Learning Pregrasp Manipulation of Objects from Ungraspable Poses, 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9917-9923
6
Y. Song, Y. Fei, C. Cheng, X. Li, C. Yu, 2019, UG-Net for Robotic Grasping using Only Depth Image, 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 913-918
7
C. Chen, H.-Y. Li, X. Zhang, X. Liu, U.-X. Tan, Aug 2019, Towards robotic picking of targets with background distractors using deep reinforcement learning,, in Proc. WRC Symp. Adv. Robot. Autom. (WRC SARA), Beijing, China
8
W. Yuan, J. A. Stork, D. Kragic, M. Y. Wang, K. Hang, 2018, Rearrangement with Nonprehensile Manipulation Using Deep Reinforcement Learning, 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 270-277
9
H. Song, J. A. Hausten, W. Yuan, K. Hang, 2019, Multi-Object Rearrangement with Monte Carlo Tree Search: A Case Study on Planar Nonprehensile Sorting, arXiv preprint arXiv:1912.07024
10
P. Ni, W. Zhang, H. Zhang, Q. Cao, 2020, Learning efficient push and grasp policy in a totebox from simulation, Advanced Robotics, Vol. 34, No. 13, pp. 873-887
11
K. He, X. Zhang, S. Ren, J. Sun, 2016, Deep residual learning for image recognition, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778
12
C. Szegedy, W. J. Liu, Y. Sermanet, P. Reed, 2015, Going deeper with convolutions, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9
13
G. Huang, Z. Liu, Q. K, 2017, Densely connected convolutional networks, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708
14
Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, N. Freitas, 2016, Dueling network architectures for deep reinforcement learning, In International conference on machine learning, pp. 1995-2003
15
H. Van Hasselt, A. Guez, D. Silver, 2016, Deep reinforcement learning with double q-learning, In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, No. 1
16
J. Deng, W. Dong, R. Socher, L. Li, Kai Li, Li Fei-Fei, 2009, ImageNet: A large-scale hierarchical image database, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255
17
E. Rohmer, S. P. N. Singh, M. Freese, 2013, V-REP: A versatile and scalable robot simulation framework, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321-1326
18
Maximilian IGL, 2019, Generalization in reinforcement learning with selective noise injection and information bottleneck, arXiv preprint arXiv:1910.12911