• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
K. Gu, S.I. Niculescu, 2001, Further remarks on additional dynamics in various model transformation of linear delay systems, IEEE Trans Automat Control, Vol. 46, No. 3, pp. 297-500DOI
2 
P. Park, J.W. Ko, C. Jeong, 2011, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, Vol. 47, pp. 235-238DOI
3 
A. Seuret, F. Gouaisbaut, 2013, Wirtinger-based integral inequality: Application to time-delayed systems, Automatica, Vol. 49, pp. 2860-2866DOI
4 
A. Seuret, F. Gouaisbaut, 2015, Hierarchy of LMI conditions for the stability analysis of time–delay systems, Systems & Control Letters, Vol. 81, pp. 1-7DOI
5 
J.-H. Kim, 2016, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, Vol. 64, pp. 121-125DOI
6 
A. Seuret, F. Gouaisbaut, 2016, Delay dependent reciprocally convex combination Lemma, Rapport LAAS n16—6Google Search
7 
X.-M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, 2017, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, Vol. 84, pp. 221-226DOI
8 
C.-K. Zhang, Y. He, L. Jiang, M. Wu, 2017, Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE, Trans. Automatic Control, Vol. 62, pp. 5331-5336DOI
9 
T.H. Lee, J.H. Park, 2017, A novel Lyapunov fuctiontional for stability of time-varying delay systems via matrix refined function, Automatica, Vol. 90, pp. 239-242DOI
10 
J. Chen, J.H. Park, S. Xu, 2019, Stability analysis of systems with time-varying delay: a quadratic–partitioning method, IET Control Theory and Applications, Vol. 13, pp. 3184-3189DOI
11 
F. de, M.C. Oliveira, F. Souza, 2020, Further refinements in stability conditions for time-varying delay systems, Applied Math. Comput., Vol. 359, No. 124866Google Search
12 
C.K. Zhang, F. Long, Y. He, W. Yao, L. Jiang, M. Wu, 2020, A relaxed quadratic function negative-determination lemma and its application to time-delay systems, Automatica, Vol. 113, No. 108764Google Search
13 
Y. Chen, Y. Li, 2021, Stability analysis for time-delay systems via novel negative condition of quadratic polynomial function, International Journal of Control Automation and Systems, Vol. 19Google Search
14 
X.M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, Y. He, 2019, Overview of recent advances in stability of linear systems with time-varying delays, IET Control Theory and Applications, Vol. 12, pp. 1-16DOI
15 
J. Chen, J.H. Park, S. Xu, B. Zhang, 2022, A survey of inequality techniques for stability analysis of time-delay systems, Int. J. Robust and Control, Vol. 32, pp. 5412-6440DOI
16 
S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishhnan, 1994, Linear Matrix Inequalities in System and Control Theory, Studies in Applied mathematicsGoogle Search
17 
K. Gu, V.L. Kharitonov, J. Chen, 2003, Stability of time- delay systems, BirkhausserGoogle Search
18 
E. Fridman, 2014, Introduction to time-delay systems: Analysis and control, BirkhauserGoogle Search