KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2023-01
(Vol.72 No.01)
10.5370/KIEE.2023.72.1.102
Journal XML
XML
PDF
INFO
REF
References
1
K. Gu, S.I. Niculescu, 2001, Further remarks on additional dynamics in various model transformation of linear delay systems, IEEE Trans Automat Control, Vol. 46, No. 3, pp. 297-500
2
P. Park, J.W. Ko, C. Jeong, 2011, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, Vol. 47, pp. 235-238
3
A. Seuret, F. Gouaisbaut, 2013, Wirtinger-based integral inequality: Application to time-delayed systems, Automatica, Vol. 49, pp. 2860-2866
4
A. Seuret, F. Gouaisbaut, 2015, Hierarchy of LMI conditions for the stability analysis of time–delay systems, Systems & Control Letters, Vol. 81, pp. 1-7
5
J.-H. Kim, 2016, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, Vol. 64, pp. 121-125
6
A. Seuret, F. Gouaisbaut, 2016, Delay dependent reciprocally convex combination Lemma, Rapport LAAS n16—6
7
X.-M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, 2017, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, Vol. 84, pp. 221-226
8
C.-K. Zhang, Y. He, L. Jiang, M. Wu, 2017, Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE, Trans. Automatic Control, Vol. 62, pp. 5331-5336
9
T.H. Lee, J.H. Park, 2017, A novel Lyapunov fuctiontional for stability of time-varying delay systems via matrix refined function, Automatica, Vol. 90, pp. 239-242
10
J. Chen, J.H. Park, S. Xu, 2019, Stability analysis of systems with time-varying delay: a quadratic–partitioning method, IET Control Theory and Applications, Vol. 13, pp. 3184-3189
11
F. de, M.C. Oliveira, F. Souza, 2020, Further refinements in stability conditions for time-varying delay systems, Applied Math. Comput., Vol. 359, No. 124866
12
C.K. Zhang, F. Long, Y. He, W. Yao, L. Jiang, M. Wu, 2020, A relaxed quadratic function negative-determination lemma and its application to time-delay systems, Automatica, Vol. 113, No. 108764
13
Y. Chen, Y. Li, 2021, Stability analysis for time-delay systems via novel negative condition of quadratic polynomial function, International Journal of Control Automation and Systems, Vol. 19
14
X.M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, Y. He, 2019, Overview of recent advances in stability of linear systems with time-varying delays, IET Control Theory and Applications, Vol. 12, pp. 1-16
15
J. Chen, J.H. Park, S. Xu, B. Zhang, 2022, A survey of inequality techniques for stability analysis of time-delay systems, Int. J. Robust and Control, Vol. 32, pp. 5412-6440
16
S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishhnan, 1994, Linear Matrix Inequalities in System and Control Theory, Studies in Applied mathematics
17
K. Gu, V.L. Kharitonov, J. Chen, 2003, Stability of time- delay systems, Birkhausser
18
E. Fridman, 2014, Introduction to time-delay systems: Analysis and control, Birkhauser