• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishhnan, 1994, Linear Matrix Inequalities in System and Control Theory, Studies in Applied mathematicsGoogle Search
2 
K. Gu, S.I. Niculescu, 2001, Further remarks on additional dynamics in various model transformation of linear delay systems, IEEE Trans Automat Control, Vol. 46, No. 3, pp. 297-500DOI
3 
K. Gu, V.L. Kharitonov, J. Chen, 2003, Stability of time-delay systems, BirkhausserGoogle Search
4 
D. Liverzon, 2003, Switching in systems and control, BirkhauserGoogle Search
5 
H. Lin, P.J. Antsaklis, 2009, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. automatic control, Vol. vol54, pp. 308-332DOI
6 
P. Park, J.W. Ko, C. Jeong, 2011, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, Vol. 47, pp. 235-238DOI
7 
A. Seuret, F. Gouaisbaut, 2013, Witinger-based integral inequality: Application to time-delayed systems, Automatica, Vol. 49, pp. 2860-2866DOI
8 
E. Fridman, 2014, Introduction to time-delay systems: Analysis and control, BirkhauserGoogle Search
9 
A. Seuret, F. Gouaisbaut, 2015, Hierarchy of LMI conditions for the stability analysis of time–delay systems, Systems & Control Letters, Vol. 81, pp. 1-7DOI
10 
J.-H. Kim, 2016, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, Vol. 64, pp. 121-125DOI
11 
A. Seuret, F. Gouaisbaut, 2016, Delay dependent reciprocally convex combination Lemma, Rapport LAAS n16—6Google Search
12 
X.-M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, 2017, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, Vol. 84, pp. 221-226DOI
13 
C.-K. Zhang, Y. He, L. Jiang, M. Wu, 2017, Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE, Trans. Automatic Control, Vol. 62, pp. 5331-5336DOI
14 
C.K. Zhang, Y. He, L. Jiang, W.J. Lin, M. Wu, 2017, Delay dependent stability analysis of neural networks with time- varying delay: A generalized free-weighting matrix approach, Applied Math. Comput. vol. 294, pp. 102-120DOI
15 
T.H. Lee, J.H. Park, 2017, A novel Lyapunov functional for stability of time-varying delay systems via matrix refined function, Automatica, 90, pp. 239-242DOI
16 
J. Chen, J.H. Park, S. Xu, 2019, Stability analysis of systems with time-varying delay: a quadratic–partitioning method, IET Control Theory and Applications, Vol. 13, pp. 3184-3189DOI
17 
H.-B Zeng, X.-G. Liu, W. Wang, 2019, A generalized free- matrix-based integral inequality for stability analysis oof time- varying delay systems, Applied Mathematics and Computation, Vol. 354, pp. 1-8DOI
18 
X.M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, Y. He, 2019, Overview of recent advances in stability of linear systems with time-varying delays, IET Control Theory and Applications, Vol. 12, pp. 1-16DOI
19 
J. Park, P. Park, 2020, Finite-interva; quadratic polynomial inequalities and their application to time-delay systems, J. of the Franklin Institute, Vol. 357, No. 7, pp. 4316-4327DOI
20 
F. de Oliveira, M.C., F. Souza, 2020, Further refinements in stability conditions for time-varying delay systems, Applied Math. Comput., Vol. 359, 124866DOI
21 
T.H. Lee, 2020, Geometry-based condtions for a quadratic function: Application to stability of time-varying delay systems, IEEE Access, 8, 92462DOI
22 
J. Chen, J.H. Park, S. Xu, B. Zhang, 2022, A survey of inequality techniques for stability analysis of time-delay systems, Int. J. Robust and Control, 32, pp. 5412-6440DOI