• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
SelectraVision, measuring Catenary, selectravision.com. Accessed: Sept. 26, 2023. [Online.] Available: http://www.selectravision. com/catenary.php.Google Search
2 
L. Chen, C. Xu, S. Lin, S. Li, X. Tu, 2020, A deep learning- based method for overhead contact system component recognition using mobile 2D LiDAR, Sensors, Vol. 20, No. 8, pp. 2224DOI
3 
A. Gutiérrez-Fernández, C. Fernández-Llamas, V. Matellán- Olivera, A. Suárez-González, 2020, Automatic extraction of power cables location in railways using surface lidar systems, Sensors, Vol. 20, No. 21, pp. 6222DOI
4 
X. Tu, C. Xu, S. Liu, S. Lin, L. Chen, G. Xie, R. Li, 2020, LiDAR point cloud recognition and visualization with deep Learning for overhead contact inspection, Sensors, Vol. 20, No. 21, pp. 6387DOI
5 
S. Lin, C. Xu, L. Chen, S. Li, X. Tu, 2020, LiDAR point cloud recognition of overhead catenary system with deep learning, Sensors, Vol. 20, No. 8, pp. 2212DOI
6 
X. Chen, Z. Chen, G. Liu, K. Chen, L. Wang, W. Xiang, R. Zhang, 2021, Railway overhead contact system point cloud classification, Sensors, Vol. 21, No. 15, pp. 4961DOI
7 
Y. Geng, F. Pan, L. Jia, Z. Wang, Y. Qin, L. Tong, S. Li, 2021, UAV-LiDAR-based measuring framework for height and stagger of high-speed railway contact wire, IEEE Trans. on Intelligent Transportation Systems, Vol. 23, No. 7, pp. 7587-7600DOI
8 
L. Zhang, J. Wang, Y. Shen, J. Liang, Y. Chen, L. Chen, M. Zhou, 2022, A Deep Learning Based Method for Railway Overhead Wire Reconstruction from Airborne LiDAR Data, Remote Sensing, Vol. 14, No. 20, pp. 5272DOI
9 
A. Sánchez-Rodríguez, M. Soilán, M. Cabaleiro, P. Arias, 2019, Automated inspection of railway tunnels’ power line using LiDAR point clouds, Remote Sensing, Vol. 11, No. 21, pp. 2567DOI
10 
I. Aydin, M. Karakose, E. Akin, 2015, Anomaly detection using a modified kernel-based tracking in the pantograph–catenary system, Expert Systems with Applications, Vol. 42, No. 2, pp. 938-948DOI
11 
C. J. Cho, H. Ko, pp 1294-1304 2014, Video-based dynamic stagger measurement of railway overhead power lines using rotation- invariant feature matching, IEEE Trans. on Intelligent Transportation Systems, Vol. 16DOI
12 
E. Karakose, M. T. Gencoglu, M. Karakose, I. Aydin, E. Akin, pp 635-643 2016, A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph–catenary systems, IEEE Trans. on Industrial Informatics, Vol. 13DOI
13 
D. Zhang, S. Gao, L. Yu, G. Kang, D. Zhan, X. Wei, 2019, A robust pantograph–catenary interaction condition monitoring method based on deep convolutional network, IEEE Trans. on Instrumentation and Measurement, Vol. 69, No. 5, pp. 1920-1929DOI
14 
O. Ronneberger, P. Fischer, T. Brox, 2015, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention Conf., pp. 234-241DOI