KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2023-10
(Vol.72 No.10)
10.5370/KIEE.2023.72.10.1285
Journal XML
XML
PDF
INFO
REF
References
1
SelectraVision, measuring Catenary, selectravision.com. Accessed: Sept. 26, 2023. [Online.] Available: http://www.selectravision. com/catenary.php.
2
L. Chen, C. Xu, S. Lin, S. Li, X. Tu, 2020, A deep learning- based method for overhead contact system component recognition using mobile 2D LiDAR, Sensors, Vol. 20, No. 8, pp. 2224
3
A. Gutiérrez-Fernández, C. Fernández-Llamas, V. Matellán- Olivera, A. Suárez-González, 2020, Automatic extraction of power cables location in railways using surface lidar systems, Sensors, Vol. 20, No. 21, pp. 6222
4
X. Tu, C. Xu, S. Liu, S. Lin, L. Chen, G. Xie, R. Li, 2020, LiDAR point cloud recognition and visualization with deep Learning for overhead contact inspection, Sensors, Vol. 20, No. 21, pp. 6387
5
S. Lin, C. Xu, L. Chen, S. Li, X. Tu, 2020, LiDAR point cloud recognition of overhead catenary system with deep learning, Sensors, Vol. 20, No. 8, pp. 2212
6
X. Chen, Z. Chen, G. Liu, K. Chen, L. Wang, W. Xiang, R. Zhang, 2021, Railway overhead contact system point cloud classification, Sensors, Vol. 21, No. 15, pp. 4961
7
Y. Geng, F. Pan, L. Jia, Z. Wang, Y. Qin, L. Tong, S. Li, 2021, UAV-LiDAR-based measuring framework for height and stagger of high-speed railway contact wire, IEEE Trans. on Intelligent Transportation Systems, Vol. 23, No. 7, pp. 7587-7600
8
L. Zhang, J. Wang, Y. Shen, J. Liang, Y. Chen, L. Chen, M. Zhou, 2022, A Deep Learning Based Method for Railway Overhead Wire Reconstruction from Airborne LiDAR Data, Remote Sensing, Vol. 14, No. 20, pp. 5272
9
A. Sánchez-Rodríguez, M. Soilán, M. Cabaleiro, P. Arias, 2019, Automated inspection of railway tunnels’ power line using LiDAR point clouds, Remote Sensing, Vol. 11, No. 21, pp. 2567
10
I. Aydin, M. Karakose, E. Akin, 2015, Anomaly detection using a modified kernel-based tracking in the pantograph–catenary system, Expert Systems with Applications, Vol. 42, No. 2, pp. 938-948
11
C. J. Cho, H. Ko, pp 1294-1304 2014, Video-based dynamic stagger measurement of railway overhead power lines using rotation- invariant feature matching, IEEE Trans. on Intelligent Transportation Systems, Vol. 16
12
E. Karakose, M. T. Gencoglu, M. Karakose, I. Aydin, E. Akin, pp 635-643 2016, A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph–catenary systems, IEEE Trans. on Industrial Informatics, Vol. 13
13
D. Zhang, S. Gao, L. Yu, G. Kang, D. Zhan, X. Wei, 2019, A robust pantograph–catenary interaction condition monitoring method based on deep convolutional network, IEEE Trans. on Instrumentation and Measurement, Vol. 69, No. 5, pp. 1920-1929
14
O. Ronneberger, P. Fischer, T. Brox, 2015, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention Conf., pp. 234-241