• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
C. DeBruler, 2017, Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries, Chem, Vol. 3, pp. 961-978Google Search
2 
M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, M. Saleem, I. Mustafa, 2013, Redox Flow Battery for Energy Storage., Arabian Journal for Science and Engineering, Vol. 38, pp. 723-739Google Search
3 
J. Noack, N. Roznyatovskaya, T. Herr, 2015, The Chemistry of Redox-Flow Batteries, Angewandte Chemie-International Edition, Vol. 54, pp. 9775-9808DOI
4 
F. Pan, Q. Wang, 2015, Redox Species of Redox Flow Batteries: A Review, Molecules, Vol. 20, pp. 20499-20517DOI
5 
N. X. Wang, 2015, Electrochemical synthesis and characterization of branched viologen derivatives, Electrochimica Acta, Vol. 154, pp. 361-369DOI
6 
B. Dunn, H. Kamath, J. M. Tarascon, 2011, Electrical Energy Storage for the Grid: A Battery of Choices, Science, Vol. 334, pp. 928-935DOI
7 
B. Hu, C. DeBruler, Z. Rhodes, T. L. Liu, 2017, Long- Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage, Journal of the American Chemical Society, Vol. 139, pp. 1207-1214DOI
8 
B. Hu, C. Seefeldt, C. DeBruler, T. L. Liu, 2017, Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries, Journal of Materials Chemistry A, Vol. 5, pp. 22137-22145DOI
9 
J. Luo, B. Hu, C. Debruler, T. L. Liu, 2018, A pi-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries, Angewandte Chemie-International Edition, Vol. 57, pp. 231-235DOI
10 
S. Mehboob, 2018, Enhancing the performance of all-vanadium redox flow batteries by decorating carbon felt electrodes with SnO2 nanoparticles, Applied Energy, Vol. 229, pp. 910-921DOI
11 
V. Singh, S. Kim, J. Kang, 2019, Aqueous organic redox flow batteries, Nano Research, Vol. 12, pp. 1988-2001DOI
12 
S. S. Jang, 2021, Methyl Viologen Anolyte Introducing Nitrate as Counter-Anion for an Aqueous Redox Flow Battery, Journal of the Electrochemical Society, Vol. 168, pp. 100532Google Search
13 
S. Gentil, D. Reynard, H. H. Girault, 2020, Aqueous organic and redox-mediated redox flow batteries: a review, Current Opinion in Electrochemistry, Vol. 21, pp. 7-13DOI
14 
J. T. Han, 2020, Two-Electron Storage Viologen for Aqueous Organic Redox Flow Batteries, Chemical Journal of Chinese Universities-Chinese, Vol. 41, pp. 1035-1041Google Search
15 
P. Sullivan, 2023, Viologen Hydrothermal Synthesis and Structure-Property Relationships for Redox Flow Battery Optimization, Advanced Energy Materials, Vol. 13, pp. 2203919DOI
16 
E. Pedraza, 2023, Unprecedented Aqueous Solubility of TEMPO and its Application as High Capacity Catholyte for Aqueous Organic Redox Flow Batteries, Advanced Energy Materials, Vol. 13, pp. 2203919DOI
17 
S. Jin, 2020, Near Neutral pH Redox Flow Battery with Low Permeability and Long-Lifetime Phosphonated Viologen Active Species, Advanced Energy Materials, Vol. 10, pp. 2000100DOI
18 
J. Y. Ye, 2019, Redox targeting-based flow batteries, Journal of Physics D-Applied Physics, Vol. 52, pp. 443001DOI
19 
T. Sagara, H. Tahara, 2021, Redox of Viologen for Powering and Coloring, Chemical Record, Vol. 21, pp. 2375-2388DOI
20 
X. Wang, J. C. Chai, J. B. Jiang, 2021, Redox flow batteries based on insoluble redox-active materials. A review, Nano Materials Science, Vol. 3, pp. 17-24DOI
21 
B. Ambrose, R. P. Naresh, M. Ulaganathan, P. Ragupathy, M. Kathiresan, 2022, Modified viologen as an efficient anolyte for aqueous organic redox flow batteries, Materials Letters, Vol. 314, pp. 131876DOI
22 
Q. R. Chen, 2022, Organic Electrolytes for pH-Neutral Aqueous Organic Redox Flow Batteries, Advanced Functional Materials, Vol. 32, pp. 2108777DOI
23 
M. W. Hu, W. D. Wu, J. Luo, T. L. Liu, 2022, Desymmetrization of Viologen Anolytes Empowering Energy Dense, Ultra Stable Flow Batteries toward Long-Duration Energy Storage, Advanced Energy Materials, Vol. 12, pp. 2202085DOI
24 
J. Montero, 2022, A Neutral-pH Aqueous Redox Flow Battery Based on Sustainable Organic Electrolytes, Chemelectrochem, Vol. 10, pp. 202201002DOI
25 
G. Park, W. Lee, Y. Kwon, 2022, Aqueous organic redox flow batteries using naphthoquinone and iodide maintaining pH of electrolytes desirably by adoption of carboxylic acid functionalized carbon nanotube catalyst, International Journal of Energy Research, Vol. 46, pp. 3362-3375DOI
26 
G. G. Tang, 2022, Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries, Jacs Au, Vol. 2, pp. 1214-1222DOI
27 
W. Lee, K. I. Shim, G. Park, J. W. Han, Y. Kwon, 2023, Rational design of composite supporting electrolyte required for achieving high performance aqueous organic redox flow battery, Chemical Engineering Journal, Vol. 464, pp. 142661Google Search
28 
A. Ohira, T. Funaki, E. Ishida, J. D. Kim, Y. Sato, 2020, Redox-Flow Battery Operating in Neutral and Acidic Environments with Multielectron-Transfer-Type Viologen Molecular Assembly, Acs Applied Energy Materials, Vol. 3, pp. 4377-4383Google Search
29 
H. R. Jiang, 2020, A high power density and long cycle life vanadium redox flow battery, Energy Storage Materials, Vol. 24, pp. 529-540Google Search
30 
W. D. Wu, A. P. Wang, J. Luo, 2023, A Highly Stable, Capacity Dense Carboxylate Viologen Anolyte towards Long-Duration Energy Storage, Angewandte Chemie-International Edition, Vol. 135, pp. 202216662Google Search
31 
M. Chen, L. Liu, P. Y. Zhang, H. N. Chen, 2021, A low- cost and high-loading viologen-based organic electrode for rechargeable lithium batteries, Rsc Advances, Vol. 11, pp. 24429-24435Google Search