KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2023-11
(Vol.72 No.11)
10.5370/KIEE.2023.72.11.1507
Journal XML
XML
PDF
INFO
REF
References
1
C. DeBruler, 2017, Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries, Chem, Vol. 3, pp. 961-978
2
M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, M. Saleem, I. Mustafa, 2013, Redox Flow Battery for Energy Storage., Arabian Journal for Science and Engineering, Vol. 38, pp. 723-739
3
J. Noack, N. Roznyatovskaya, T. Herr, 2015, The Chemistry of Redox-Flow Batteries, Angewandte Chemie-International Edition, Vol. 54, pp. 9775-9808
4
F. Pan, Q. Wang, 2015, Redox Species of Redox Flow Batteries: A Review, Molecules, Vol. 20, pp. 20499-20517
5
N. X. Wang, 2015, Electrochemical synthesis and characterization of branched viologen derivatives, Electrochimica Acta, Vol. 154, pp. 361-369
6
B. Dunn, H. Kamath, J. M. Tarascon, 2011, Electrical Energy Storage for the Grid: A Battery of Choices, Science, Vol. 334, pp. 928-935
7
B. Hu, C. DeBruler, Z. Rhodes, T. L. Liu, 2017, Long- Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage, Journal of the American Chemical Society, Vol. 139, pp. 1207-1214
8
B. Hu, C. Seefeldt, C. DeBruler, T. L. Liu, 2017, Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries, Journal of Materials Chemistry A, Vol. 5, pp. 22137-22145
9
J. Luo, B. Hu, C. Debruler, T. L. Liu, 2018, A pi-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries, Angewandte Chemie-International Edition, Vol. 57, pp. 231-235
10
S. Mehboob, 2018, Enhancing the performance of all-vanadium redox flow batteries by decorating carbon felt electrodes with SnO2 nanoparticles, Applied Energy, Vol. 229, pp. 910-921
11
V. Singh, S. Kim, J. Kang, 2019, Aqueous organic redox flow batteries, Nano Research, Vol. 12, pp. 1988-2001
12
S. S. Jang, 2021, Methyl Viologen Anolyte Introducing Nitrate as Counter-Anion for an Aqueous Redox Flow Battery, Journal of the Electrochemical Society, Vol. 168, pp. 100532
13
S. Gentil, D. Reynard, H. H. Girault, 2020, Aqueous organic and redox-mediated redox flow batteries: a review, Current Opinion in Electrochemistry, Vol. 21, pp. 7-13
14
J. T. Han, 2020, Two-Electron Storage Viologen for Aqueous Organic Redox Flow Batteries, Chemical Journal of Chinese Universities-Chinese, Vol. 41, pp. 1035-1041
15
P. Sullivan, 2023, Viologen Hydrothermal Synthesis and Structure-Property Relationships for Redox Flow Battery Optimization, Advanced Energy Materials, Vol. 13, pp. 2203919
16
E. Pedraza, 2023, Unprecedented Aqueous Solubility of TEMPO and its Application as High Capacity Catholyte for Aqueous Organic Redox Flow Batteries, Advanced Energy Materials, Vol. 13, pp. 2203919
17
S. Jin, 2020, Near Neutral pH Redox Flow Battery with Low Permeability and Long-Lifetime Phosphonated Viologen Active Species, Advanced Energy Materials, Vol. 10, pp. 2000100
18
J. Y. Ye, 2019, Redox targeting-based flow batteries, Journal of Physics D-Applied Physics, Vol. 52, pp. 443001
19
T. Sagara, H. Tahara, 2021, Redox of Viologen for Powering and Coloring, Chemical Record, Vol. 21, pp. 2375-2388
20
X. Wang, J. C. Chai, J. B. Jiang, 2021, Redox flow batteries based on insoluble redox-active materials. A review, Nano Materials Science, Vol. 3, pp. 17-24
21
B. Ambrose, R. P. Naresh, M. Ulaganathan, P. Ragupathy, M. Kathiresan, 2022, Modified viologen as an efficient anolyte for aqueous organic redox flow batteries, Materials Letters, Vol. 314, pp. 131876
22
Q. R. Chen, 2022, Organic Electrolytes for pH-Neutral Aqueous Organic Redox Flow Batteries, Advanced Functional Materials, Vol. 32, pp. 2108777
23
M. W. Hu, W. D. Wu, J. Luo, T. L. Liu, 2022, Desymmetrization of Viologen Anolytes Empowering Energy Dense, Ultra Stable Flow Batteries toward Long-Duration Energy Storage, Advanced Energy Materials, Vol. 12, pp. 2202085
24
J. Montero, 2022, A Neutral-pH Aqueous Redox Flow Battery Based on Sustainable Organic Electrolytes, Chemelectrochem, Vol. 10, pp. 202201002
25
G. Park, W. Lee, Y. Kwon, 2022, Aqueous organic redox flow batteries using naphthoquinone and iodide maintaining pH of electrolytes desirably by adoption of carboxylic acid functionalized carbon nanotube catalyst, International Journal of Energy Research, Vol. 46, pp. 3362-3375
26
G. G. Tang, 2022, Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries, Jacs Au, Vol. 2, pp. 1214-1222
27
W. Lee, K. I. Shim, G. Park, J. W. Han, Y. Kwon, 2023, Rational design of composite supporting electrolyte required for achieving high performance aqueous organic redox flow battery, Chemical Engineering Journal, Vol. 464, pp. 142661
28
A. Ohira, T. Funaki, E. Ishida, J. D. Kim, Y. Sato, 2020, Redox-Flow Battery Operating in Neutral and Acidic Environments with Multielectron-Transfer-Type Viologen Molecular Assembly, Acs Applied Energy Materials, Vol. 3, pp. 4377-4383
29
H. R. Jiang, 2020, A high power density and long cycle life vanadium redox flow battery, Energy Storage Materials, Vol. 24, pp. 529-540
30
W. D. Wu, A. P. Wang, J. Luo, 2023, A Highly Stable, Capacity Dense Carboxylate Viologen Anolyte towards Long-Duration Energy Storage, Angewandte Chemie-International Edition, Vol. 135, pp. 202216662
31
M. Chen, L. Liu, P. Y. Zhang, H. N. Chen, 2021, A low- cost and high-loading viologen-based organic electrode for rechargeable lithium batteries, Rsc Advances, Vol. 11, pp. 24429-24435