• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, 6th ed., Pearson, 2010.URL
2 
M. Krstic, P.V. Kokotovic, and I. Kanellakopoulos, Non- linear and Adaptive Control Design, John Wiley & Sons, Inc., 1995.URL
3 
C. Edwards and S. Spurgeon, Sliding Mode Control: Theory and Applications, CRC Press, 1998.URL
4 
Y. I. Son and S. Lim, “Design of an RBF neural network supervisory controller based on a sliding mode control approach,” Trans. of KIEE, vol. 70, no. 12, pp. 1984-1991, 2021.URL
5 
J. Back and H. Shim, “Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: A nonlinear version of disturbance observer,” Automatica, vol. 44, no. 10, pp. 2528-2537, 2008.DOI
6 
H. Shim and N. H. Jo, “An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer,” Automatica, vol. 45, no. 1, pp. 296- 299, 2009.DOI
7 
H. Shim, G. Park, Y. Joo, J. Back and N. H. Jo, “Yet another tutorial of disturbance observer: robust stabilization and recovery of nominal performance,” Control Theory Tech., vol. 14, no. 3, pp. 237-249, 2016.DOI
8 
E. Sariyildiz, R. Oboe and K. Ohnishi, “Disturbance observer- based robust control and its applications: 35th anniversary overview,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2042-2053, 2020.DOI
9 
Y. I. Son and I. H. Kim, “A robust state observer using multiple integrators for multivariable LTI systems,” IEICE Trans. Fund. Electron., vol. E93-A, no. 5, pp. 981-984, 2010.DOI
10 
M. Ruderman, A. Ruderman and T. Bertram, “Observer- based compensation of additive periodic torque distur- bances in permanent magnet motors,” IEEE Trans. Ind. Inf. vol. 9, no. 2, pp. 1130-1138, 2013.DOI
11 
I. H. Kim and Y. I. Son, “Regulation of a DC/DC boost converter under parametric uncertainty and input voltage variation using nested reduced-order PI observers,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 552-562, 2017.DOI
12 
I. H. Kim and Y. I. Son, “Design of a low-order harmonic disturbance observer with application to a DC motor posi- tion control,” energies, vol. 13, no. 5, pp. 1020, 2020.DOI
13 
B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, no. 5, pp. 457-465, 1976.DOI
14 
Y. Joo, G. Park, J. Back, and H. Shim, “Embedding internal model in disturbance observer with robust stability,” IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 3128- 3133, 2016.DOI
15 
J. I. Yuz and M. E. Salgado, “From classical to state- feedback-based controllers,” IEEE Control Systems Magazine, vol. 23, no. 4, pp. 58-67, 2003.DOI
16 
Y. I. Son, S. J. Yang, and N. D. Amare, “An equivalent condition of IMP-based controller and DOB-based controller for a DC motor speed control system,” Trans. of KIEE, vol. 71, no. 1, pp. 189-195, 2022.URL
17 
S. K. Sul, Control of Electric Machine Drive Systems, Seoul: Hongreung Science Publisher, 2016.URL
18 
J. Yao, Z. Jiao and D. Ma, “Adaptive robust control of DC motors with extended state observer,” IEEE Trans. Ind, Electron., vol. 61, no. 7, pp. 3630-3636, 2014.DOI
19 
J. H. Yook, I. H. Kim, M. S. Han and Y. I. Son, “Robustness improvement of DC motor speed control using communication disturbance observer under uncertain time delay,” Electron. Lett., vol. 53, no. 6, pp. 389-391, 2017.DOI
20 
T. Kailath, Linear Systems, Prentice Hall, Inc., 1980.URL