• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
R. Dutta, L. Chong and M. Rahman, “Design and experimental verification of an 18-slot/14-pole fractional-slot concentrated winding interior permanent magnet machine,” IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 181-190, 2012. DOI:10.1109/TEC.2012.2229281DOI
2 
H. -I. Park, J. -Y. Choi, K. -H. Jeong and S. -K. Cho, “Comparative analysis of surface-mounted and interior permanent magnet synchronous motor for compressor of air-conditioning system in electric vehicles,” in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), IEEE, pp. 1700-1705, 2015. DOI:10.1109/ICPE.2015.7168006DOI
3 
G. Du, N. Li, Q. Zhou, W. Gao, L. Wang and T. Pu, “Multi-physics comparison of surface-mounted and interior permanent magnet synchronous motor for high-speed applications,” Machines, vol. 10, no. 8, pp. 700, 2022. DOI:10.3390/machines10080700DOI
4 
Y. -H. Jung, M. -R. Park, K. -O. Kim, J. -W. Chin, J. -P. Hong and M.-S. Lim, “Design of high-speed multilayer IPMSM using ferrite PM for EV traction considering mechanical and electrical characteristics,” IEEE Trans. Ind. Appl., vol. 57, no. 1, pp. 327-339, 2020. DOI:10.1109/TIA.2020.3033783DOI
5 
S. -U. Jung, D. -S. Kim, J. -S. Lee and J. -W. Jung, “Study on Performance Changes of EV Traction Motor Applying CFRP Sleeve to IPMSM,” IEEE Trans. Magn., 2024. DOI:10.1109/TMAG.2024.3509873DOI
6 
J. -h. Ahn, C. Han, C. -w. Kim and J. -y. Choi, “Rotor design of high-speed permanent magnet synchronous motors considering rotor magnet and sleeve materials,” IEEE Trans. Appl. Supercond, vol. 28, no. 3, pp. 1-4, 2017. DOI:10.1109/TASC.2017.2786690DOI
7 
J. Dong, Y. Huang, L. Jin and H. Lin, “Comparative study of surface-mounted and interior permanent-magnet motors for high-speed applications,” IEEE Trans. Appl. Supercond, vol. 26, no. 4, pp. 1-4, 2016. DOI:10.1109/TASC.2016.2514342DOI
8 
L. Yi, P. Yulong, L. Peixin and C. Feng, “Analysis of the rotor mechanical strength of interior permanent magnet synchronous in-wheel motor with high speed and large torque,” in 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), IEEE, pp. 1-5, 2014. DOI:10.1109/ITEC-AP.2014.6941181DOI
9 
J. -W. Jung et al., “Mechanical stress reduction of rotor core of interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 48, no. 2, pp. 911-914, 2012. DOI:10.1109/TMAG.2011.2172582DOI
10 
G. Chu, R. Dutta, D. Xiao, J. E. Fletcher and M. F. Rahman, “Development and optimization of a mechanically robust novel rotor topology for very-high-speed IPMSMs,” IEEE Trans. Energy Convers., vol. 38, no. 3, pp. 1781-1792, 2023. DOI:10.1109/TEC.2023.3258463DOI
11 
J. R. Hendershot Jr. and T. J. E. Miller, Design of brushless permanent magnet motors, Oxford, 1994.URL
12 
M. -S. Lim, J. -M. Kim, Y. -S. Hwang and J. -P. Hong, “Design of an ultra-high-speed permanent-magnet motor for an electric turbocharger considering speed response characteristics,” IEEE-ASME Trans. Mechatron, vol. 22, no. 2, pp. 774-784, 2016. DOI:10.1109/TMECH.2016.2634160DOI
13 
J. Ou, Y. Liu and M. Doppelbauer, “Comparison study of a surface-mounted PM rotor and an interior PM rotor made from amorphous metal of high-speed motors,” IEEE Trans. Ind. Electron., vol. 68, no. 10, pp. 9148-9159, 2020. DOI:10.1109/TIE.2020.3026305DOI
14 
J. Zhao, S. Zhao, H. Yin, X. Yang, J. Cao and G. Zeng, “Design and Optimization of an Outer-Rotor SPMSM with permanent magnets of Reverse Step Shape,” in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), IEEE, pp. 1-5, A, 2019. DOI:10.1109/ICEMS.2019.8922253DOI
15 
Y. Li and Z. Zhu, “Cogging torque and unbalanced magnetic force prediction in PM machines with axial-varying eccentricity by superposition method,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1-4, 2017. DOI:10.1109/TMAG.2017.2700522DOI
16 
W. Wang, H. Ma, X. Qiu and J. Yang, “A calculation method for the on-load cogging torque of permanent magnet synchronous machine,” IEEE Access, vol. 7, pp. 106316-106326, 2019. DOI:10.1109/ACCESS.2019.2929429DOI
17 
Z. Zhu, Y. Liu and D. Howe, “Minimizing the influence of cogging torque on vibration of PM brushless machines by direct torque control,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3512-3514, 2006. DOI:10.1109/TMAG.2006.879439DOI
18 
H. Qiu, S. Duan and C. Yang, “A method of reducing the cogging torque in a flux–torque regulation hybrid excitation machine with axial–radial magnetic circuit,” Electr. Eng., vol. 106, no. 3, pp. 2973-2983, 2024. DOI:10.1007/s00202-023-02121-wDOI
19 
J. Dong, Y. Huang, L. Jin and H. Lin, “Comparative study of surface-mounted and interior permanent-magnet motors for high-speed applications,” IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1-4, 2016. DOI:10.1109/TASC.2016.2514342.DOI
20 
J. -H. Lee, S. Sung, H. -W. Cho, J. -Y. Choi and K. -H. Shin, “Investigation of Electromagnetic Losses Considering Current Harmonics in High-Speed Permanent Magnet Synchronous Motor,” Energies, vol. 15, no. 23, pp. 9213, 2022. DOI:10.3390/en15239213DOI