• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Badnava, N. Meskin, A. Gastli, M. A. Al-Hitmi, J. Ghommam, M. Mesbah and F. Mnif, “Platoon transitional maneuver control system: A review,” IEEE Access, vol. 9, pp. 88327-88347, 2021.DOI:10.1109/ACCESS.2021.3089615DOI
2 
Z. Wang, Y. Bian, S. E. Shladover, G. Wu, S. E. Li and M. J. Barth, “A survey on cooperative longitudinal motion control of multiple connected and automated vehicles,” IEEE Intell. Transp. Syst. Mag., vol. 12, no. 1, pp. 4-24, 2020.DOI:10.1109/MITS.2019.2953562DOI
3 
D. Jia, K. Lu, J. Wang, X. Zhang and X. Shen, “A survey on platoon-based vehicular cyber-physical systems,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 263-284, 2016.DOI:10.1109/COMST.2015.2410831DOI
4 
S. Feng, Y. Zhang, S. E. Li, Z. Cao, H. X. Liu and L. Li, “String stability for vehicular platoon control: Definitions and analysis methods,” Annu. Reviews Control, vol. 47, pp. 81-97, 2019.DOI:10.1016/j.arcontrol.2019.03.001DOI
5 
V. Lesch, M. Breitbach, M. Segata, C. Becker, S. Kounev and C. Krupitzer, “An overview on approaches for coordination of platoons,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 10049-10065, Aug. 2022.DOI:10.1109/TITS.2021.3115908DOI
6 
J. Kwon and D. Chwa, “Adaptive bidirectional platoon control using a coupled sliding mode control method,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 5, pp. 2040-2048, Oct. 2014.DOI:10.1109/TITS.2014.2308535DOI
7 
H. Li, H. Wu, I. Gulati, S. A. Ali, V. Pickert and S. Dlay, “An improved sliding mode control (SMC) approach for enhancement of communication delay in vehicle platoon system,” IET Intell. Transport Syst., vol. 16, no. 7, pp. 958-970, Apr. 2022.DOI:10.1049/itr2.12189DOI
8 
J. Wang, X. Luo, L. Wang, Z. Zuo and X. Guan, “Integral sliding mode control using a disturbance observer for vehicle platoons,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6639-6648, Aug. 2020.DOI:10.1109/TIE.2019.2936990DOI
9 
A. Ali, G. Garcia and P. Martinet, “The flatbed platoon towing model for safe and dense platooning on highways,” IEEE Intell. Transp. Syst. Mag., vol. 7, no. 1, pp. 58-68, 2015.DOI:10.1109/MITS.2014.2328670DOI
10 
B. Liu, D. Jia, K. Lu, D. Ngoduy, J. Wang and L. Wu, “A joint control–communication design for reliable vehicle platooning in hybrid traffic,” IEEE Trans. Veh. Technol., vol. 66, no. 10, pp. 9394-9409, Oct. 2017.DOI:10.1109/TVT.2017.2702650DOI
11 
Z. Yan, D. Wu, W. Zhang and Y. Liu, “Consensus of multiagent systems with packet losses and communication delays using a novel control protocol,” Abstract Appl. Anal., vol. 2014, Article ID 159609, Apr. 2014.DOI:10.1155/2014/159609DOI
12 
L. Lei, T. Liu, K. Zheng and L. Hanzo, “Deep reinforcement learning aided platoon control relying on V2X information,” IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 5811-5826, Jun. 2022.DOI:10.1109/TVT.2022.3161585DOI
13 
F. Ma, J. Wang, Y. Yu, L. Wu, Z. Liu, B. Aksun-Guvenc and L. Guvenc, “Parameter-space-based robust control of event-triggered heterogeneous platoon,” IET Intell. Transport Syst., vol. 15, no. 1, pp. 61-73, Nov. 2020.DOI:10.1049/itr2.12004DOI
14 
J. Lan, D. Zhao and D. Tian, “Data-driven robust predictive control for mixed vehicle platoons using noisy measurement,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 6, pp. 6586-6596, Jun. 2023.DOI:10.1109/TITS.2021.3128406DOI
15 
X. Guo, J. Wang, F. Liao and R. S. H. Teo, “Distributed adaptive sliding mode control strategy for vehicle-following systems with nonlinear acceleration uncertainties,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 981-991, Feb. 2017.DOI:10.1109/TVT.2016.2556938DOI
16 
Y. Ma, Z. Li, R. Malekian, R. Zhang, X. Song and M. A. Sotelo, “Hierarchical fuzzy logic-based variable structure control for vehicles platooning,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 4, pp. 1329-1340, Apr. 2019.DOI:10.1109/TITS.2018.2846198DOI
17 
Z. Wu, J. Sun and S. Hong, “RBFNN-based adaptive event-triggered control for heterogeneous vehicle platoon consensus,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 18761-18773, Oct. 2022.DOI:10.1109/TITS.2022.3166843DOI
18 
M. Hu, X. Wang, Y. Bian, D. Cao and H. Wang, “Disturbance observer-based cooperative control of vehicle platoons subject to mismatched disturbance,” IEEE Trans. Intell. Veh., vol. 8, no. 4, pp. 2748-2758, Apr. 2023.DOI:10.1109/TIV.2023.3237703DOI
19 
J. Boo and D. Chwa, “Integral sliding mode control-based robust bidirectional platoon control of vehicles with the unknown acceleration and mismatched disturbance,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 10, pp. 10881-10894, Oct. 2023.DOI:10.1109/TITS.2023.3281033DOI
20 
A. Levant, “Higher-order sliding modes, differentiation and output-feedback control,” Int. J. Control, vol. 76, no. 9-10, pp. 924-941, 2003.DOI:10.1080/0020717031000099029DOI
21 
Y. Shtessel, I. A. Shkolnikov and A. Levant, “Smooth second-order sliding modes: Missile guidance application,” Automatica, vol. 43, no. 8, pp. 1470-1476, Jun. 2007.DOI:10.1016/j.automatica.2007.01.008DOI
22 
W. Meng, Q. Yang, J. Sarangapani and Y. Sun, “Distributed control of nonlinear multiagent systems with asymptotic consensus,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 47, no. 5, pp. 749-757, May 2017.DOI:10.1109/TSMC.2017.2660883DOI
23 
H. K. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.URL