• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S.C. Back, 2021, To be carbon neutral by 2050, Journal of the Korean society of civil engineers, Vol. 69, No. 8, pp. 14-15Google Search
2 
S. G. Yun, H. Im, 2021, A Study for Sector Coupling Based on Renewable Energy to Respond to Climate Change, Journal of Climate Change Research, Vol. 10, No. 2, pp. 153-159Google Search
3 
W. Gu, J. Wang, S. Lu, Z. Luo, C. and Wu, 2017, Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings, Applied energy, Vol. 199, No. 1, pp. 234-246DOI
4 
J.-P. Jimenez-Navarro, K. Kavvadias, F. Filippidou, M. Pavičević, S. Quoilin, 2020, Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system, Applied Energy, Vol. 270, No. 15, pp. 115134DOI
5 
R. Lahdelma, H. Hakonen, 2003, An efficient linear programming algorithm for combined heat and power production, Eur. J. Oper. Res., Vol. 148, pp. 141-151DOI
6 
B. McDaniel, D. Kosanovic, 2016, Modeling of combined heat and power plant performance with seasonal thermal energy storage, Journal of Energy Storage, Vol. 7, pp. 13-23DOI
7 
P. Pinel, C.A. Cruickshank, I. Beausoleil-Morrison, A. Wills, 2011, A review of available methods for seasonal storage of solar thermal energy in residential applications, Renewable Sustainable Energy Reviews, Vol. 15, No. 7, pp. 3341-3359DOI
8 
J. Li, A. Laredj, G. Tian, 2017, A Case Study of a CHP System and its Energy use Mapping, Energy Procedia, Vol. 105, pp. 1526-1531DOI
9 
Andreas B. , Wolf-Peter S. , Alexander Z. , 2018, Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials, Applied Energy, Vol. 212, pp. 1611-1626DOI
10 
Mehdi F. , Ali P. , Moein M.-A. , Amir F.-H. , 2021, A bi-level model for optimal bidding of a multi-carrier technical virtual power plant in energy markets, International Journal of Electrical Power & Energy Systems, Vol. 125, pp. 106397DOI
11 
B. Johanna, M. M. Rubén, N. Fredrik, J. Filip, 2020, Combined heat and power operational modes for increased product flexibility in a waste incineration plant, Energy, Vol. 202, pp. 117696DOI
12 
Y. Ding, C. Shao, B. Hu, M. Bao, T. Niu, K. Xie, C. Singh, 2021, Operational Reliability Assessment of Integrated Heat and Electricity Systems Considering the Load Uncertainties, IEEE Transactions on Smart Grid, Vol. 12, No. 5, pp. 3928-3939DOI
13 
D. Xie, Y. Lu, J. Sun, C. Gu, G. Li, 2016, Optimal Operation of a Combined Heat and Power System Considering Real-time Energy Prices, IEEE Access, Vol. 4, pp. 3005-3015DOI
14 
J.P. Jiménez Navarro, K.C. Kavvadias, S. Quoilin, A. Zucker, 2018, The joint effect of centralised cogeneration plants and thermal storage on the efficiency and cost of the power system, Energy, Vol. 149, pp. 535-549DOI
15 
W.S. Sarle, 1990, Algorithms for clustering data, Taylor & FrancisGoogle Search
16 
M. Alipour, B. Mohammadi-Ivatloo, 2014, Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs, Energy, Vol. 136, pp. 394-404DOI
17 
Lazard, Levelized Cost of Energy Analysis, http://www.lazard. com/perspective/levelized-cost-of-energy-analysis-100/Google Search
18 
Z. Liu, Y. Chen, Y. Luo, G. Zhao, X. Jin, 2016, Optimized Planning of Power Source Capacity in Microgrid Considering Combinations of Energy Storage Devices, Applied Sciences, Vol. 6, pp. 416-434DOI
19 
W. Ko, J. Kim, 2019, Generation Expansion Planning Model for Integrated Energy System Considering Feasible Operation Region and Generation Efficiency of Combined Heat and Power, Energies, Vol. 12, No. 2, pp. 226-245DOI